Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

David Madigan - Towards systematic evidence generation from real-world healthcare data

Автор: Lander Analytics

Загружено: 2019-06-19

Просмотров: 639

Описание:

Towards systematic evidence generation from real-world healthcare data
By David Madigan

Abstract:
In practice, our learning healthcare system relies primarily on observational studies generating one effect estimate at a time using customized study designs with unknown operating characteristics and publishing – or not – one estimate at a time. When we investigate the distribution of estimates that this process has produced, we see clear evidence of its shortcomings, including an apparent over-abundance of estimates where the confidence interval does not include one (i.e. statistically significant effects). We propose a standardized process for performing observational research that can be evaluated, calibrated and applied at scale to generate a more reliable and complete evidence base than previously possible, fostering a truly learning healthcare system. We demonstrate this new paradigm by generating evidence about all pairwise comparisons of treatments for hypertension for a relevant set of health outcomes using nine large electronic healthcare record databases from 3 continents. In total, we estimate more than 1M hazard ratios, each using a comparative effectiveness study design and propensity score stratification on par with current state-of-the-art, albeit one-off, observational studies. Moreover, the process enables us to employ negative and positive controls to evaluate and calibrate estimates ensuring, for example, that the 95% confidence interval includes the true effect size approximately 95% of time. The result set consistently reflects current established knowledge where known, and its distribution shows no evidence of the faults of the current process.

Bio:
David Madigan is Professor of Statistics at Columbia University in New York City and Dean Emeritus of Arts and Sciences. He received a bachelor’s degree in Mathematical Sciences and a Ph.D. in Statistics, both from Trinity College Dublin. He has previously worked for AT&T Inc., Soliloquy Inc., the University of Washington, Rutgers University, and SkillSoft, Inc. He has over 200 publications in such areas as Bayesian statistics, text mining, Monte Carlo methods, pharmacovigilance and probabilistic graphical models. He is an elected Fellow of the American Statistical Association, the Institute of Mathematical Statistics, and the American Association for the Advancement of Science. He has served terms as Editor-in-Chief of Statistical Science and of Statistical Analysis and Data Mining – the ASA Data Science Journal.

Twitter: @davidbmadigan

Presented at the 2019 New York R Conference (May 10th, 2019)

David Madigan -  Towards systematic evidence generation from real-world healthcare data

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Positive December Jazz ☕ Sweet Morning Coffee Jazz & Bossa Nova Instrumental for Great Mood

Positive December Jazz ☕ Sweet Morning Coffee Jazz & Bossa Nova Instrumental for Great Mood

Building a Retail Equity Trading Model Using Social Media Posts w/ Art Steinmetz- nyhackr Nov Meetup

Building a Retail Equity Trading Model Using Social Media Posts w/ Art Steinmetz- nyhackr Nov Meetup

Adam Chekroud -  Personalizing mental healthcare at scale

Adam Chekroud - Personalizing mental healthcare at scale

Понимание Active Directory и групповой политики

Понимание Active Directory и групповой политики

4 Hours Chopin for Studying, Concentration & Relaxation

4 Hours Chopin for Studying, Concentration & Relaxation

Ludmila Janda - Teaching Data Cleaning and Visualization with R-inspired Custom Scratch Blocks

Ludmila Janda - Teaching Data Cleaning and Visualization with R-inspired Custom Scratch Blocks

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

Max Kuhn - Measuring LLM Effectiveness

Max Kuhn - Measuring LLM Effectiveness

Daniel Chen - LLMs, Chatbots, and Dashboards: Visualize Your Data with Natural Language

Daniel Chen - LLMs, Chatbots, and Dashboards: Visualize Your Data with Natural Language

🔴 Relax & Unwind || Live 24/7 Relaxation and Spa Music 🔴

🔴 Relax & Unwind || Live 24/7 Relaxation and Spa Music 🔴

Andrew Gelman - What's Going On In There? Bayesian Tools for Understanding a Fitted Model

Andrew Gelman - What's Going On In There? Bayesian Tools for Understanding a Fitted Model

Понимание GD&T

Понимание GD&T

Статистика стала проще!!! Узнайте о t-критерии, хи-квадрат тесте, p-значении и многом другом

Статистика стала проще!!! Узнайте о t-критерии, хи-квадрат тесте, p-значении и многом другом

Музыка для глубокого фокуса для улучшения концентрации — 12 часов эмбиентной учебной музыки для конц

Музыка для глубокого фокуса для улучшения концентрации — 12 часов эмбиентной учебной музыки для конц

Andrew Wallender - How to Use Free, Open-Source Text Embeddings Accomplish Advanced Textual Analysis

Andrew Wallender - How to Use Free, Open-Source Text Embeddings Accomplish Advanced Textual Analysis

Как узнать, какой статистический тест использовать для проверки гипотез

Как узнать, какой статистический тест использовать для проверки гипотез

Но что такое нейронная сеть? | Глава 1. Глубокое обучение

Но что такое нейронная сеть? | Глава 1. Глубокое обучение

Выучите R за 39 минут

Выучите R за 39 минут

Как производятся микрочипы? 🖥️🛠️ Этапы производства процессоров

Как производятся микрочипы? 🖥️🛠️ Этапы производства процессоров

Обзор литературы — пошаговое руководство для аспирантов | Проф. Дэвид Стаклер

Обзор литературы — пошаговое руководство для аспирантов | Проф. Дэвид Стаклер

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]