301.3D Abelian Groups, Center of a Group
Автор: Matthew Salomone
Загружено: 2018-09-23
Просмотров: 4942
In an abelian group, the commutative property holds for all pairs of elements. But in any group, the commutative property will hold for at least one element -- we call the set on which it holds the center of the group. We prove that the center of a group ZG is not only a subset, it is a subgroup of G.
Доступные форматы для скачивания:
Скачать видео mp4
-
Информация по загрузке: