Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Russell Miller: Computability questions about infinite Galois groups

Автор: Hausdorff Center for Mathematics

Загружено: 2026-01-06

Просмотров: 122

Описание:

For an infinite algebraic field extension $E/F$, Calvert, Harizanov, and Shlapentokh described the automorphisms of $E$ over $F$ as the set of paths through a tree. Under some basic computability assumptions about $E$ and $F$, this tree is computable, and composition and inversion of the paths are both computable by Turing functionals. Thus we have an effective presentation of the Galois group $\operatorname{Gal}(E/F)$, despite its potentially-continuum size.
For finite fields, this presentation of the absolute Galois group is extremely nice, indeed as close to being a decidable structure as one can get in this cardinality. We will explain the notion of ``tree-decidability,'' developed by Block and the speaker, that makes this rigorous. Predictably, the absolute Galois group of $\mathbb Q$ is nastier: we will quantify this nastiness in a few specific ways -- one of them joint with Kundu -- and pose several open questions about exactly how bad it gets.

Russell Miller: Computability questions about infinite Galois groups

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Ellen Hammatt: Exploring structural aspects of punctual degrees

Ellen Hammatt: Exploring structural aspects of punctual degrees

Александра Шлапентох: Эллиптические кривые и определимость над большими кольцами

Александра Шлапентох: Эллиптические кривые и определимость над большими кольцами

The Secret Technique to Learn Anything Fast | Richard Feynman

The Secret Technique to Learn Anything Fast | Richard Feynman

Terence Tao, inaugural Veritas Fellow — autoformalizing number theory | Math, Inc.

Terence Tao, inaugural Veritas Fellow — autoformalizing number theory | Math, Inc.

Chris Laskowski: Classifying first order theories by Borel reducibility: Status Report

Chris Laskowski: Classifying first order theories by Borel reducibility: Status Report

22.12.2025| S. I. Repin| Estimates of the distance to a set of solenoidal fields and applications...

22.12.2025| S. I. Repin| Estimates of the distance to a set of solenoidal fields and applications...

Catherine Powell: Parametric PDEs: Numerical Methods for Forward UQ & Surrogate Modelling (Part I)

Catherine Powell: Parametric PDEs: Numerical Methods for Forward UQ & Surrogate Modelling (Part I)

Интервью с Андреа Бьянки

Интервью с Андреа Бьянки

Conversation with Elon Musk | World Economic Forum Annual Meeting 2026

Conversation with Elon Musk | World Economic Forum Annual Meeting 2026

Robert Scheichl: An Introduction to Multiscale Methods and Localised Model Reduction (Part IV)

Robert Scheichl: An Introduction to Multiscale Methods and Localised Model Reduction (Part IV)

Keshav Srinivasan: Cohesive Powers of Algebraic Number Fields

Keshav Srinivasan: Cohesive Powers of Algebraic Number Fields

29.12.2025| A. I. Nazarov| A non-simple simple inequality (symmetry and asymmetry of extremals in...

29.12.2025| A. I. Nazarov| A non-simple simple inequality (symmetry and asymmetry of extremals in...

The 5 Greatest Wannabe Mahler Conductors

The 5 Greatest Wannabe Mahler Conductors

Sven Manthe: The Borel monadic theory of order is decidable

Sven Manthe: The Borel monadic theory of order is decidable

Interview with Lola Thompson

Interview with Lola Thompson

Robert Scheichl: An Introduction to Multiscale Methods and Localised Model Reduction (Part III)

Robert Scheichl: An Introduction to Multiscale Methods and Localised Model Reduction (Part III)

Informacje Telewizja Republika 23.01.2026 godzina 12:30

Informacje Telewizja Republika 23.01.2026 godzina 12:30

The new AI race: Enterprise innovation in 2026

The new AI race: Enterprise innovation in 2026

Richard Feynman Explains What Everyone Gets Wrong About GRAVITY

Richard Feynman Explains What Everyone Gets Wrong About GRAVITY

Fabio Nobile: Multilevel Monte Carlo methods for random differential equations (Part II)

Fabio Nobile: Multilevel Monte Carlo methods for random differential equations (Part II)

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: infodtube@gmail.com