Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Paper Review Calls 011 -- U-Net: Convolutional Networks for Biomedical Image Segmentation

Автор: Machine Learning Dojo

Загружено: 2019-04-27

Просмотров: 17601

Описание:

U-Net: Convolutional Networks for Biomedical Image Segmentation
Ronneberger et al, 15

Roll up everybody! Join Karol Zak for a review of this seminal paper on semantic segmentation. Semantic segmentation is a popular task in computer vision to assign each pixel in an image to a class in a supervised fashion. Karol is our top expert in semantic segmentation (in CSE) and has been involved in several fascinating projects using it!

https://arxiv.org/pdf/1505.04597.pdf

"Abstract. There is large consent that successful training of deep networks requires many thousand annotated training samples. In this paper, we present a network and training strategy that relies on the strong use of data augmentation to use the available annotated samples more efficiently. The architecture consists of a contracting path to capture context and a symmetric expanding path that enables precise localization. We show that such a network can be trained end-to-end from very few images and outperforms the prior best method (a sliding-window convolutional network) on the ISBI challenge for segmentation of neuronal structures in electron microscopic stacks. Using the same network trained on transmitted light microscopy images (phase contrast and DIC) we won the ISBI cell tracking challenge 2015 in these categories by a large margin. Moreover, the network is fast. Segmentation of a 512x512 image takes less than a second on a recent GPU. The full implementation (based on Caffe) and the trained networks are available at http://lmb.informatik.uni-freiburg.de... ."

  / zakkarol  
Karol Zak
Machine Learning Software Engineer at Microsoft
"ML Engineer building and deploying machine learning models in cloud environment https://github.com/karolzak"

COMPLIANCE NOTICE:
THIS WAS FILMED WHILE I WORKED AT MICROSOFT, NOW I DON'T
EVERYONE IN THIS VIDEO HAS GIVEN PERMISSION TO APPEAR IN THE VIDEO
NO MICROSOFT CONFIDENTIAL INFORMATION WAS DISCUSSED
WE ARE DISCUSSING PUBLIC LITERATURE
THESE ARE OUR PERSONAL OPINIONS
I REFERRED TO THE CHANNEL AS "MACHINE LEARNING AT MICROSOFT", IT HAS NOW BEEN RENAMED "MACHINE LEARNING DOJO" TO MAKE IT CLEAR IT'S NOT AN OFFICIAL MICROSOFT CHANNEL
THIS WAS FILMED IN APRIL 2019 IN OUR PERSONAL TIME

Paper Review Calls 011 -- U-Net: Convolutional Networks for Biomedical Image Segmentation

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Paper Reviews Call 002 -- FaceNet: A Unified Embedding for Face Recognition and Clustering

Paper Reviews Call 002 -- FaceNet: A Unified Embedding for Face Recognition and Clustering

Paper Review Call 021 - Learning spatiotemporal features with 3d convolutional networks

Paper Review Call 021 - Learning spatiotemporal features with 3d convolutional networks

We Need To Talk About Money with Fabrice des Mazery

We Need To Talk About Money with Fabrice des Mazery

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

Image segmentation - Explained!

Image segmentation - Explained!

nnU-Net: Automated Design of Deep Learning Methods for Biomedical Image Segmentation | Paul Jäger

nnU-Net: Automated Design of Deep Learning Methods for Biomedical Image Segmentation | Paul Jäger

4 Hours Chopin for Studying, Concentration & Relaxation

4 Hours Chopin for Studying, Concentration & Relaxation

A friendly introduction to Convolutional Neural Networks and Image Recognition

A friendly introduction to Convolutional Neural Networks and Image Recognition

Eska Hity Grudzień 2025  🎵 Najlepsza Muzyka Radia – Eska Mix Vol.2

Eska Hity Grudzień 2025 🎵 Najlepsza Muzyka Radia – Eska Mix Vol.2

Градиентный спуск, как обучаются нейросети | Глава 2, Глубинное обучение

Градиентный спуск, как обучаются нейросети | Глава 2, Глубинное обучение

CV3DST - Semantic Segmentation

CV3DST - Semantic Segmentation

What are Convolutional Neural Networks (CNNs)?

What are Convolutional Neural Networks (CNNs)?

[Classic] Deep Residual Learning for Image Recognition (Paper Explained)

[Classic] Deep Residual Learning for Image Recognition (Paper Explained)

nnU-Net, a Self-configuring Method for Deep Learning-based Biomedical Image Segmentation: F. Isensee

nnU-Net, a Self-configuring Method for Deep Learning-based Biomedical Image Segmentation: F. Isensee

ДНК создал Бог? Самые свежие научные данные о строении. Как работает информация для жизни организмов

ДНК создал Бог? Самые свежие научные данные о строении. Как работает информация для жизни организмов

Webinar 31 Preparing medical imaging data for machine learning by Martin Willemink

Webinar 31 Preparing medical imaging data for machine learning by Martin Willemink

Lecture 11 | Detection and Segmentation

Lecture 11 | Detection and Segmentation

225 - Attention U-net. What is attention and why is it needed for U-Net?

225 - Attention U-net. What is attention and why is it needed for U-Net?

Paper Review Call 019 - UMAP

Paper Review Call 019 - UMAP

Mask Region based Convolution Neural Networks - EXPLAINED!

Mask Region based Convolution Neural Networks - EXPLAINED!

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]