Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Accident Detection using Python | OpenCV & Deep Learning | AI Project + Source Code

Автор: ScratchLearnEnglish

Загружено: 2025-10-28

Просмотров: 40

Описание:

🚀 Welcome to this AI-powered Accident Detection Project built using Python, OpenCV, and Deep Learning!

In this hands-on tutorial, we’ll create a real-time vehicle accident detection system using computer vision and AI models trained on image/video data — step by step, from dataset to deployment!

🧩 What You’ll Learn:

✅ Detect and classify vehicle accidents in real-time using Deep Learning.
✅ Use OpenCV for video stream processing and frame analysis.
✅ Train a CNN model (Convolutional Neural Network) for accident detection.
✅ Integrate AI alerts for automatic accident recognition.
✅ Implement the project fully in Python, with source code included!

🧰 Tech Stack & Tools Used:

🐍 Python

🧠 TensorFlow / Keras

👁️ OpenCV

🧾 NumPy, Pandas, Matplotlib

🎥 Accident / Vehicle Detection Dataset

🎓 Perfect For:

Students, developers, and AI enthusiasts searching for:

AI & Computer Vision Projects

Deep Learning Projects in Python

Machine Learning Final Year Projects

Accident Detection Systems for Smart Cities

Real-time Detection Projects with OpenCV

🕒 Vehicle Accident Detection Project Timeline
00:00 - 02:00 → Introduction and Project Overview (Accident Detection Importance, Use of CCTV Cameras)

02:01 - 05:00 → Dataset Introduction (Kaggle Dataset), Convolutional Neural Network (CNN) Overview

05:01 - 08:00 → Google Colab Setup: Opening Notebook, Setting Runtime to GPU, Mounting Google Drive

08:01 - 12:00 → Installing Libraries and Importing Essentials (OS, CV2, NumPy, Keras, TensorFlow)

12:01 - 15:00 → Data Preprocessing: Loading Images, Grayscale Conversion, Resizing, Label Encoding

15:01 - 20:00 → CNN Model Architecture Explanation (Conv2D Layers, Batch Normalization, Max Pooling)

20:01 - 23:00 → Model Compilation, Training Setup, and Callbacks for Best Weights Saving

23:01 - 27:00 → Model Training Process (Epochs, Batch Size, Tracking Accuracy and Loss)

27:01 - 30:00 → Model Evaluation: Accuracy, Loss, Confusion Matrix, Classification Report

30:01 - 33:00 → Preparing Trained Model for Inference: Loading Weights and Prediction Approach

33:01 - 36:00 → VS Code Setup for Inference: Project Files, Required Libraries, Configuration

36:01 - 39:00 → Real-Time Video Stream Processing Logic and CNN Inference Pipeline

39:01 - 42:00 → Notification Mechanism: MQTT Setup, Server Configuration, Topic Subscription

42:01 - 45:00 → Displaying Results: Drawing Bounding Boxes, Showing Warning Text, Live Stream Encoding

45:01 - 48:00 → Mobile App Integration: Receiving Notifications, Live Stream Viewing

48:01 - 50:00 → Summary and Conclusion: Project Use Cases, Future Improvements, Community Support

📥 Download Source Code & Dataset:
🔗Get the complete source code & documentation here 👉 [ https://www.scratchlearn.com/projects... ]
🔗 Explore 20+ Real-World AI Projects: [ https://www.scratchlearn.com/explore-... ]

🔥 Don’t forget to LIKE 👍, SHARE 🔁, and SUBSCRIBE 🔔 for more AI, Python & Deep Learning Projects every week!

#accidentdetection #aiprojects #pythonprojects #opencv #deeplearning #computervision #machinelearning #ai #python #datascience #smartcity #ProjectWithSourceCode #scratchlearn

Accident Detection using Python | OpenCV & Deep Learning | AI Project + Source Code

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

array(0) { }

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]