Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

A Gentle Approach to Crystalline Cohomology - Jacob Lurie

Автор: Institute for Advanced Study

Загружено: 2022-02-28

Просмотров: 11620

Описание:

Members’ Colloquium

Topic: A Gentle Approach to Crystalline Cohomology
Speaker: Jacob Lurie
Affiliation: Professor, School of Mathematics
Date: February 28, 2022

Let X be a smooth affine algebraic variety over the field C of complex numbers (that is, a smooth submanifold of C^n which can be described as the solutions to a system of polynomial equations). Grothendieck showed that the de Rham cohomology of X can be computed using only polynomial differential forms on X. This observation was the starting point for the theory of algebraic de Rham cohomology, which has proved to be a useful invariant for algebraic varieties over an arbitrary field k. In the case where k has positive characteristic, Berthelot and Grothendieck introduced a refinement of algebraic de Rham cohomology, known as crystalline cohomology. Later work of Bloch, Deligne, and Illusie showed that crystalline cohomology could be computed using an explicit chain complex, called the de Rham-Witt complex. In this talk, I'll give an overview of some of these ideas and sketch an alternative construction of the de Rham-Witt complex (joint work with Bhargav Bhatt and Akhil Mathew).

A Gentle Approach to Crystalline Cohomology - Jacob Lurie

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

On the unpredictability of fluid motions - Dallas Albritton

On the unpredictability of fluid motions - Dallas Albritton

The Classification of Extended Topological Field Theories -Jacob Lurie

The Classification of Extended Topological Field Theories -Jacob Lurie

Algebraic Topology 20: Introduction to Cohomology

Algebraic Topology 20: Introduction to Cohomology

Henri Darmon: Andrew Wiles' marvelous proof

Henri Darmon: Andrew Wiles' marvelous proof

What is... p-adic geometry? - Jacob Lurie

What is... p-adic geometry? - Jacob Lurie

Grassmann algebra and deRham cohomology - Lec 12 - Frederic Schuller

Grassmann algebra and deRham cohomology - Lec 12 - Frederic Schuller

What is a Motive? - Pierre Deligne

What is a Motive? - Pierre Deligne

Abstract Algebra in Homotopy-Coherent Mathematics - Jacob Lurie

Abstract Algebra in Homotopy-Coherent Mathematics - Jacob Lurie

Rationalized Syntomic Cohomology - Jacob Lurie

Rationalized Syntomic Cohomology - Jacob Lurie

Jacob Lurie: 2015 Breakthrough Prize in Mathematics Symposium

Jacob Lurie: 2015 Breakthrough Prize in Mathematics Symposium

Nonetheless one should learn the language of topos: Grothendieck... - Colin McLarty [2018]

Nonetheless one should learn the language of topos: Grothendieck... - Colin McLarty [2018]

Jacob Lurie: Brauer Groups in Stable Homotopy Theory

Jacob Lurie: Brauer Groups in Stable Homotopy Theory

Lie Algebras and Homotopy Theory - Jacob Lurie

Lie Algebras and Homotopy Theory - Jacob Lurie

A stacky approach to crystalline (and prismatic) cohomology - Vladimir Drinfeld

A stacky approach to crystalline (and prismatic) cohomology - Vladimir Drinfeld

Эндрю Уайлс: Великая теорема Ферма: абелев и неабелев подходы

Эндрю Уайлс: Великая теорема Ферма: абелев и неабелев подходы

Cohomology as obstruction

Cohomology as obstruction

Peter Scholze, Cohomology of algebraic varieties

Peter Scholze, Cohomology of algebraic varieties

Peter Scholze, p-adic geometry

Peter Scholze, p-adic geometry

Jacob Lurie:  On the prismatization of the field with one element.

Jacob Lurie: On the prismatization of the field with one element.

Они унизили уборщика — и поплатились за это | Розыгрыш в спортзале от Анатолия № 57

Они унизили уборщика — и поплатились за это | Розыгрыш в спортзале от Анатолия № 57

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]