Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

(EViews10): ARCH vs. GARCH Models (Estimations)

Автор: CrunchEconometrix

Загружено: 2019-12-04

Просмотров: 9504

Описание:

This video explains why GARCH is preferred to ARCH models due to its parsimony. I simplify the understanding of the generalised autoregressive conditional heteroscedasticity (GARCH) model using an approach that beginners can grasp. The GARCH Modeling series has 9 collections on the following topics: (1) ARCH versus GARCH (Background), (2) Basics of GARCH Modeling, (3) how to estimate a simple GARCH model, (4) ARCH versus GARCH (Estimations), (5) how to estimate GARCH-in-Mean models, (6) how to estimate Threshold GARCH (GJR GARCH) models, (7) how to estimate Exponential GARCH models, (8) GARCH models and diagnostics and (9) how to forecast GARCH volatility. So, what is GARCH? Generalised autoregressive indicates that heteroscedasticity observed over different time periods may be autocorrelated; conditional informs that variance is based on past errors; heteroscedasticity implies the series displays unequal variance. Popularised by Tim Bollerslev in 1986.

Why use GARCH: Models the attitude of investors not only towards expected returns but also towards risk (uncertainty); Relates to economic forecasting and measuring volatility; Techniques  GARCH, GARCH-M, TGARCH, EGARCH, PGARCH, CGARCH, IGARCH and several other extensions; Concerned with modeling the volatility of the variance; Conditional and time-varying variance; Deals with stationary (time-invariant mean) and nonstationary (time-varying mean) variables; Nonstationary  varying mean; Heteroscedastic  varying variance; Concerns financial and macroeconomic time series; Duration  daily, weekly, monthly, quarterly (high frequency data); Financial/economic series  stock prices, oil prices, bond prices, inflation rates, exchange rates, interest rates, GDP, unemployment rates etc. What is conditional variance? The assumption of homoscedasticity (constant variance) is very limiting, hence preferable to examine patterns that allow the variance to depend (conditional) on its history. Volatility Clustering: Periods when large changes are followed by further large changes and periods when small changes are followed by further small changes. Shows wild and calm periods.

Some Lessons Learnt: The time-varying variance is modeled by the procedure called autoregressive conditional heteroscedasticity (ARCH); GARCH simply conveys that the series in question has a time-varying variance (heteroscedasticity) that depends on (conditional on) lagged effects (autocorrelation); GARCH model is intuitively appealing because it explains volatility as a function of the errors. These errors are called “shocks” or “news” by financial analysts. They represent the unexpected!; The larger the shocks, the greater the volatility in the series; Since variance is often used to measure volatility, and volatility is a key element in asset pricing theories, GARCH models have become important in empirical finance; Most financial time series like stock prices, exchange rates, oil prices etc. exhibit random walks in their level form, that is, nonstationary (time-varying means)

Need the data used in the video? Click on these links:
https://www.macmillanihe.com/companio... https://cruncheconometrix.com.ng/shop/ the data is FREE on my website but you have to CART it and CHECK-OUT at ZERO cost 

References and Readings: Asteriou and Hall (2016) Applied Econometrics, 3ed; Hill, Griffiths and Lim (2008) Principles of Econometrics, 3ed; Roman Kozhan (2010) Financial Econometrics with EViews; Gujarati and Porter (2009) Basic Econometrics, International Edition; R. Engle, “Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation,” Econometrica, vol. 50. No. 1, 1982, pp. 987–1007; A. Bera and M. Higgins, “ARCH Models: Properties, Estimation and Testing,” Journal of Economic Surveys, vol. 7, 1993, pp. 305–366; Bollerslev (1986); Amadeus Wennström (2014) Volatility Forecasting Performance: Evaluation of GARCH type volatility models on Nordic equity indices; Bollerslev, T (1986)“Generalised Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation,” Journal of Econometrica, vol. 31, pp. 307–327; Tsay, R.S. (2002) Analysis of Financial Time Series, John Wiley & Sons, Inc., New York.

Follow up with soft-notes and updates from CrunchEconometrix:
Playlists:    / cruncheconometrix  
Website: https://cruncheconometrix.com.ng
Blog: https://cruncheconometrix.blogspot.co...
Facebook:   / cruncheconometrix  
YouTube Custom URL:    / cruncheconometrix  
Twitter:   / crunchmetrix  
Reddit:   / crunchmetrix  

(EViews10): ARCH vs. GARCH Models (Estimations)

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

(EViews10): How to Estimate Standard GARCH Models #garch #arch #volatility #clustering #archlm

(EViews10): How to Estimate Standard GARCH Models #garch #arch #volatility #clustering #archlm

(EViews10): How to Perform GARCH Diagnostics  #garch #diagnostics #garchdiagnostics #archdiagnostics

(EViews10): How to Perform GARCH Diagnostics #garch #diagnostics #garchdiagnostics #archdiagnostics

Know the Basics of ARCH Modeling (Part 1)#arch #volatility #modeling #econometrics #financialmodels

Know the Basics of ARCH Modeling (Part 1)#arch #volatility #modeling #econometrics #financialmodels

GARCH model - Eviews

GARCH model - Eviews

Будем Наблюдать. Алексей Венедиктов* и Сергей Бунтман / 17.01.26

Будем Наблюдать. Алексей Венедиктов* и Сергей Бунтман / 17.01.26

ARCH vs GARCH (The Background) #garch #arch #clustering #volatility #mgarch #tgarch #egarch #igarch

ARCH vs GARCH (The Background) #garch #arch #clustering #volatility #mgarch #tgarch #egarch #igarch

How to estimate arch model - eviews tutorial complete

How to estimate arch model - eviews tutorial complete

(EViews10): How to Estimate Threshold GARCH (GJR-GARCH) #garchm  #tgarch   #egarch #gjr-garch

(EViews10): How to Estimate Threshold GARCH (GJR-GARCH) #garchm #tgarch #egarch #gjr-garch

(EViews10) - How to Test for ARCH Effects #archeffects #archmodeling #volatility #heteroscedasticity

(EViews10) - How to Test for ARCH Effects #archeffects #archmodeling #volatility #heteroscedasticity

(EViews10): How to Estimate GARCH-in-Mean Models   #garchmodels #garchm #tgarch #volatility #egarch

(EViews10): How to Estimate GARCH-in-Mean Models #garchmodels #garchm #tgarch #volatility #egarch

(EViews10): Forecasting GARCH Volatility   #forecast #garchforecasts #volatilityforecast

(EViews10): Forecasting GARCH Volatility #forecast #garchforecasts #volatilityforecast

(EViews10): How to Estimate Exponential GARCH Models   #garchm #tgarch #egarch #igarch #cgarch #arch

(EViews10): How to Estimate Exponential GARCH Models #garchm #tgarch #egarch #igarch #cgarch #arch

Отказ от территорий? / Войска оставили позиции

Отказ от территорий? / Войска оставили позиции

1. Modeling & Analysis of Apple Stock Prices in R | GARCH Models

1. Modeling & Analysis of Apple Stock Prices in R | GARCH Models

(EViews 10) How to perform ARCH and GARCH model with interpretation model 2

(EViews 10) How to perform ARCH and GARCH model with interpretation model 2

ЗАЧЕМ ТРАМПУ ГРЕНЛАНДИЯ? / Уроки истории @MINAEVLIVE

ЗАЧЕМ ТРАМПУ ГРЕНЛАНДИЯ? / Уроки истории @MINAEVLIVE

Обсуждение временных рядов: модель ARCH

Обсуждение временных рядов: модель ARCH

Stata — Как оценить модели (G)ARCH

Stata — Как оценить модели (G)ARCH

12.2. ARCH and GARCH models

12.2. ARCH and GARCH models

4 Hours Chopin for Studying, Concentration & Relaxation

4 Hours Chopin for Studying, Concentration & Relaxation

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: infodtube@gmail.com