MCP Servers: The Missing Piece in Your AI Workflow
Автор: Brandon Todd Jackson
Загружено: 2025-12-10
Просмотров: 45
I used 6 AI agents running in parallel to research Gartner, McKinsey, MIT, and Reddit—then turned it into a production-ready lead magnet PDF with Gamma App in 30 minutes. Full deployment to Vercel with working lead capture, email nurturing via Zapier, and real debugging included. No templates. Just MCP servers, Cursor AI, and a workflow that actually works.
Full Playlist: • Building with AI
🎓 What You'll Learn
✅ Parallel AI Research → Running 6 models simultaneously (Composer, Sonnet, GPT, DeepSeek)
✅ MCP Server Deep Dive → REF, Reddit, FireCrawl pulling Gartner, McKinsey, MIT, Forrester sources
✅ Sequential Thinking Chains → Consolidating 60-step outputs into master document
✅ First Principles Debugging → Real 500 error fix on Vercel
✅ Lead Capture Pipeline → Gamma PDFs + API routes + Zapier webhooks
📚 Research Sources (AI-Pulled)
📊 Gartner AI readiness research
📈 McKinsey enterprise AI adoption studies
🎓 MIT Sloan organizational AI failures
📉 Forrester predictive analytics gaps
💬 Reddit (r/MachineLearning, r/MLOps) practitioner pain points
📰 RAND Corporation implementation cases
💼 S&P Global Market Intelligence benchmarks
Key Stats:
95% of AI pilots fail
70% fail due to org readiness, not tech
Real Reddit infrastructure gaps exposed
🛠️ Tools Stack
Development:
Cursor AI → Parallel agents, worktrees, Composer
Next.js → Responsive portfolio site
Vercel → Production deployment
Git → Feature branches, staging, push
Research & Automation:
MCP Servers (Anthropic) → REF, Reddit, FireCrawl
Perplexity → Initial scoping
Sequential Thinking → Chain consolidation
Content Creation:
Gamma App → AI PDFs with citations
Zapier → Lead capture webhooks
AI Models:
Claude Sonnet (thorough, token-heavy)
Composer (Cursor's fastest)
GPT-5 (parallel run)
DeepSeek (free, loop error)
🔥 Why This Works (Viral Framework)
✅ Mini-skill → 30-min workflow
✅ Before-after → Research → PDF
✅ Mistake-fixing → Live 500 error debug
✅ Copy-this → Exact configs shown
✅ Behind-scenes → 93K token cost reveal
✅ Industry-validated → Gartner/MIT/Reddit
⏱️ Timestamps
0:00 - Data scientists → Systems architects (2025)
2:15 - Portfolio demo (Next.js, no templates)
4:30 - Lead magnet: AI Readiness Checklist
6:45 - Perplexity research (Gartner + Reddit)
9:20 - MCP Servers = "Master key to AI"
12:00 - 6 agents parallel setup
15:30 - REF MCP → Official docs
18:45 - Reddit MCP → Pain points
21:00 - FireCrawl MCP → Article scraping
24:10 - Token usage (93K, cost comparison)
26:30 - Sequential thinking (60 steps)
29:00 - Gamma App → PDF in minutes
33:15 - Git → Vercel deployment
36:40 - LIVE DEBUG: 500 error fix
40:20 - Lead API + Zapier nurturing
42:50 - Production site + PDF download
45:00 - Recap: MCP + agents + deployment
🌐 Related
Portfolio: brandontoddjackson.com
Projects: www.GodlyDeeds.ai, www.aidemystified.app, ebook.aidemystified.app
✨ Production-Grade, Not Clickbait
✅ Anthropic's MCP (industry standard)
✅ Real sources (Gartner, McKinsey, MIT)
✅ Reddit-validated pain points
✅ Live 500 error → fixed in production
✅ Token costs analyzed (Composer vs Sonnet)
No templates. Real workflows. December 2025.
#CursorAI #MCPServers #AIAutomation #NextJS #Vercel #ParallelProcessing #AIResearch #LeadGeneration #SystemsArchitect #DataScience2025
Доступные форматы для скачивания:
Скачать видео mp4
-
Информация по загрузке: