Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Marivi Fernandez Serra - Machine learning to improve the exchange and correlation functional in DFT

Автор: Institute for Pure & Applied Mathematics (IPAM)

Загружено: 2022-06-02

Просмотров: 1134

Описание:

Recorded 26 May 2022. Marivi Fernandez-Serra of SUNY Stony Brook
Physics presents "Machine learning approaches to improve the exchange and correlation functional in density functional theory" at IPAM's Monte Carlo and Machine Learning Approaches in Quantum Mechanics Workshop.

Abstract: Finding the true exchange and correlation (XC) functional would render DFT exact. However, the true form of this elusive functional is so far unknown, and there is little hope that it can ever be written down in a closed-form expression. For practical applications, it has to be approximated. Many approximations, varying in complexity and accuracy, exist, and researchers have to decide on a case-by-case basis which functional to use. Doing so, however, is far from ideal, as the added degree of freedom can introduce hard-to-control systematic errors.
I will outline avenues for creating new XC functionals with the help of neural networks, a machine learning method. Neural networks are considered universal approximators, which means they can fit any function with arbitrary accuracy. For this reason, some people believe machine learning might hold the key to achieving something close to an exact functional.
We introduce the concept of physically informed machine learning and propose two approaches to fitting density functionals. In one approach, prior physical knowledge is injected into the training procedure by learning to add small corrections to physically motivated calculations. Our second approach demonstrates how physical information can be directly incorporated into the optimization algorithm in the form of differential equations. We show that both approaches lead to machine learning models that are significantly more data-efficient and reliable than those without physical priors. Trained automatically, the thus created models routinely outperform carefully hand-designed functionals. However, we also find that caution needs to be exercised when using machine-learned models, as they lack some of the safety-nets that traditional functionals are designed with and therefore run the risk of failing in unexpected scenarios.

Learn more online at: http://www.ipam.ucla.edu/programs/wor...

Marivi Fernandez Serra - Machine learning to improve the exchange and correlation functional in DFT

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

This is how Heisenberg created quantum mechanics: step-by-step guide #SoME4

This is how Heisenberg created quantum mechanics: step-by-step guide #SoME4

Provost’s Lecture: Karl Friston on “I Am Therefore I Think”

Provost’s Lecture: Karl Friston on “I Am Therefore I Think”

Quantum Field Theory visualized

Quantum Field Theory visualized

Mr Bean does 'Blind Date' | Comic Relief

Mr Bean does 'Blind Date' | Comic Relief

The Man Who Almost Broke Math (And Himself...) - Axiom of Choice

The Man Who Almost Broke Math (And Himself...) - Axiom of Choice

Почему люди живут в Гренландии 🇬🇱 (крупнейший замёрзший остров в мире)

Почему люди живут в Гренландии 🇬🇱 (крупнейший замёрзший остров в мире)

Stop Rambling: The 3-2-1 Speaking Trick That Makes You Sound Like A CEO

Stop Rambling: The 3-2-1 Speaking Trick That Makes You Sound Like A CEO

Math's Fundamental Flaw

Math's Fundamental Flaw

THIS is why large language models can understand the world

THIS is why large language models can understand the world

Если вы инженер, это для ВАС | Дон Макмиллан, полный стендап-выступление

Если вы инженер, это для ВАС | Дон Макмиллан, полный стендап-выступление

The Most Misunderstood Concept in Physics

The Most Misunderstood Concept in Physics

Объяснение геостратегической ценности Гренландии

Объяснение геостратегической ценности Гренландии

The biggest lie about the double slit experiment

The biggest lie about the double slit experiment

Shape Analysis (Lecture 18): Optimization on manifolds; retractions

Shape Analysis (Lecture 18): Optimization on manifolds; retractions

Feynman's Lost Lecture (ft. 3Blue1Brown)

Feynman's Lost Lecture (ft. 3Blue1Brown)

James Simons - Origin of Chern-Simons

James Simons - Origin of Chern-Simons

Scientists Just Discovered What Came Before the Big Bang—Here's What It Means

Scientists Just Discovered What Came Before the Big Bang—Here's What It Means

I finally understood orbital shapes intuitively! (My mind is blown)

I finally understood orbital shapes intuitively! (My mind is blown)

Yihui Quek - Hamiltonian Decoded Quantum Interferometry - IPAM at UCLA

Yihui Quek - Hamiltonian Decoded Quantum Interferometry - IPAM at UCLA

There Is Something Faster Than Light

There Is Something Faster Than Light

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: infodtube@gmail.com