Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Uncovering the Computational Roles of Nonlinearity in Sequence Modeling - TMLR 2026

Автор: Manuel

Загружено: 2026-01-09

Просмотров: 14

Описание:

Sequence modeling tasks across domains such as natural language processing, time-series forecasting, speech recognition, and control require learning complex mappings from input to output sequences. In recurrent networks, nonlinear recurrence is theoretically required to universally approximate such sequence-to-sequence functions; yet in practice, linear recurrent models have often proven surprisingly effective. This raises the question of when nonlinearity is truly required. In this study, we present a framework to systematically dissect the functional role of nonlinearity in recurrent networks— allowing to identify both when it is computationally necessary, and what mechanisms it enables. We address the question using Almost Linear Recurrent Neural Networks (AL-RNNs), which allow the recurrence nonlinearity to be gradually attenuated and decompose network dynamics into analyzable linear regimes, making the underlying computational mechanisms explicit.

We illustrate the framework across a diverse set of synthetic and real-world tasks, including classic sequence modeling benchmarks, an empirical neuroscientific stimulus-selection task, and a multi-task suite. We demonstrate how the AL-RNN's piecewise linear structure enables direct identification of computational primitives such as gating, rule-based integration, and memory-dependent transients, revealing that these operations emerge within predominantly linear dynamical backbones. Across tasks, sparse nonlinearity plays several functional roles: it improves interpretability by reducing and localizing nonlinear computations, promotes shared (rather than highly distributed) representations in multi-task settings, and reduces computational cost by limiting nonlinear operations. Moreover, sparse nonlinearity acts as a useful inductive bias: in low-data regimes, or when tasks require discrete switching between linear regimes, sparsely nonlinear models often match or exceed the performance of fully nonlinear architectures. Our findings provide a principled approach for identifying where nonlinearity is functionally necessary in sequence models, guiding the design of recurrent architectures that balance performance, efficiency, and mechanistic interpretability.

Uncovering the Computational Roles of Nonlinearity in Sequence Modeling - TMLR 2026

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Удалось ли Терри Тао решить уравнение стоимостью 1 000 000 долларов, которое нарушает законы физики?

Удалось ли Терри Тао решить уравнение стоимостью 1 000 000 долларов, которое нарушает законы физики?

Я в опасности

Я в опасности

XPENG IRON - China's MOST HUMAN Robot Ever Built!

XPENG IRON - China's MOST HUMAN Robot Ever Built!

Stop Cham #1403 - Niebezpieczne i chamskie sytuacje na drogach

Stop Cham #1403 - Niebezpieczne i chamskie sytuacje na drogach

DNABERT pre-trained Bidirectional Encoder Representations Transformers for DNA-language in genome

DNABERT pre-trained Bidirectional Encoder Representations Transformers for DNA-language in genome

Ziemkiewicz: Niemcy już wymazali Polskę z mapy! Szokujące słowa o „sąsiedztwie” z Rosją

Ziemkiewicz: Niemcy już wymazali Polskę z mapy! Szokujące słowa o „sąsiedztwie” z Rosją

Код работает в 100 раз медленнее из-за ложного разделения ресурсов.

Код работает в 100 раз медленнее из-за ложного разделения ресурсов.

Why Does Fire BURN? Feynman's Answer Will DESTROY Your Reality

Why Does Fire BURN? Feynman's Answer Will DESTROY Your Reality

The Man Behind Google's AI Machine | Demis Hassabis Interview

The Man Behind Google's AI Machine | Demis Hassabis Interview

I Read Honey's Source Code

I Read Honey's Source Code

Lecture 3 - Neural Networks & Deep Learning for Global Health

Lecture 3 - Neural Networks & Deep Learning for Global Health

Adam MacLean:

Adam MacLean: "Non-genetic paths of tumor escape"

How to Escape Google Surveillance: Replace Every Service in 2 Weeks

How to Escape Google Surveillance: Replace Every Service in 2 Weeks

Microsoft begs for mercy

Microsoft begs for mercy

11 - Terban PDF - Introduction to Total Scattering & PDF Analysis | Momentum Transfer | IWPD 2025

11 - Terban PDF - Introduction to Total Scattering & PDF Analysis | Momentum Transfer | IWPD 2025

No One Understands What Elon Just Said About 2026

No One Understands What Elon Just Said About 2026

GÓRNIK ZABRZE - SV RIED NA ŻYWO: TRANSMISJA + STUDIO W BELEK

GÓRNIK ZABRZE - SV RIED NA ŻYWO: TRANSMISJA + STUDIO W BELEK

Ученые измерили скорость квантовой запутанности — и это противоречит законам физики.

Ученые измерили скорость квантовой запутанности — и это противоречит законам физики.

Prawdziwy Powód, Dlaczego Psy CIĘ LIŻĄ (Szokujące!)

Prawdziwy Powód, Dlaczego Psy CIĘ LIŻĄ (Szokujące!)

The Time Paradox Hidden Inside Feynman’s Nobel Prize Work

The Time Paradox Hidden Inside Feynman’s Nobel Prize Work

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: infodtube@gmail.com