Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Lecture 20: CS217 | SVM: Hard/Soft Margins, Slack Variables & Outlier Handling | AI-ML | IITB 2025

Автор: Prof. Pushpak Bhattacharyya | IIT Bombay

Загружено: 2025-03-04

Просмотров: 447

Описание:

Welcome to Lecture 20 of the CS217: AI-ML Course by IIT Bombay. This lecture, delivered by Nihar Ranjan Sahoo (a final-year PhD student), continues our exploration of Support Vector Machines (SVMs) introduced in the previous class, focusing on the mathematical foundations, optimization techniques, and practical considerations for handling real-world data challenges.

Topics Covered:

Hard Margin SVM: Mathematical formulation for perfectly separable data, maximizing the margin by minimizing ‖w‖² under strict constraints.
Soft Margin & Slack Variables: Introduction to "slack" terms (ξ) that allow margin violations; how penalizing these violations helps accommodate noisy or non-separable data.
Outlier Management: Discussion on how outliers can shift the decision boundary and why "soft margin" approaches offer more robustness.
Geometry of SVM: Understanding perpendicular distance to the hyperplane, the role of the normal vector (w), and why maximizing the margin reduces overfitting.
Constraint Optimization: Translating the classification objective into an optimization problem that balances margin maximization with controlled margin violations.
Parameter Selection: Understanding the role of the C parameter in controlling the trade-off between margin width and misclassification error.
Optimization Techniques: Introduction to Lagrangian methods and the conversion from primal to dual formulations for solving SVM optimization problems.



This lecture is part of the CS217 course taught by Prof. Pushpak Bhattacharya and builds on fundamental machine learning principles by providing rigorous mathematical formulations for SVMs, preparing students for both theoretical understanding and practical implementation. The soft margin SVM discussion is particularly relevant for handling real-world, noisy datasets where perfect linear separation is rarely possible.

#artificialintelligence #machinelearning #iitbombay #supportvectormachines #svm #cs217 #aicourse #maximummargin #hyperplanes #optimizationtechniques #softmargin #hardmargin #lagrangian #dualformulation #slackvariables #machinelearningtheory #aiml #iitb #computerscience #classifiers #computerscience #hyperplane #marginoptimization #outliers #iitlecture #chatgpt #deepseek #anthropic

Lecture 20: CS217 | SVM: Hard/Soft Margins, Slack Variables & Outlier Handling | AI-ML | IITB 2025

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Lecture 19: CS217 | Prolog Programming & Intro to Support Vector Machines (SVM)| AI-ML | IITB 2025

Lecture 19: CS217 | Prolog Programming & Intro to Support Vector Machines (SVM)| AI-ML | IITB 2025

CS217: Artificial Intelligence and Machine Learning | Spring 2025 | IIT Bombay

CS217: Artificial Intelligence and Machine Learning | Spring 2025 | IIT Bombay

ChipStory - Prof. Rajesh Zele - IIT Bombay

ChipStory - Prof. Rajesh Zele - IIT Bombay

CS772: Deep Learning for NLP | Autumn 2025 | Prof. Pushpak Bhattacharyya

CS772: Deep Learning for NLP | Autumn 2025 | Prof. Pushpak Bhattacharyya

Prof. Hrishikesh Gadgil, Department of Aerospace Engineering, IIT Bombay

Prof. Hrishikesh Gadgil, Department of Aerospace Engineering, IIT Bombay

Lecture 1: CS217 Introduction & Search | Course Logistics | AI-ML Course | IIT Bombay | 2025

Lecture 1: CS217 Introduction & Search | Course Logistics | AI-ML Course | IIT Bombay | 2025

Чат ПГТ 5.2 - это похоронная. Самый УЖАСНЫЙ релиз в истории ИИ

Чат ПГТ 5.2 - это похоронная. Самый УЖАСНЫЙ релиз в истории ИИ

Lecture 7: CS626  POS Tagging using Conditional Random Fields (CRF) | IIT Bombay | 2024

Lecture 7: CS626 POS Tagging using Conditional Random Fields (CRF) | IIT Bombay | 2024

There Is Something Faster Than Light

There Is Something Faster Than Light

RYMANOWSKI TAK WYŚMIAŁ ŻURKA, ŻE WYSZEDŁ ZE STUDIA!? 😆

RYMANOWSKI TAK WYŚMIAŁ ŻURKA, ŻE WYSZEDŁ ZE STUDIA!? 😆

ChipStory - Episode 10 - Fabulous Fabless - Prof. Rajesh Zele - IIT Bombay

ChipStory - Episode 10 - Fabulous Fabless - Prof. Rajesh Zele - IIT Bombay

Новое обновление Gemini + NotebookLM — это просто БЕЗУМИЕ!

Новое обновление Gemini + NotebookLM — это просто БЕЗУМИЕ!

Lecture 31: CS217 | AI Gets Real: Powering Robots, Logistics & Finance | IITB 2025

Lecture 31: CS217 | AI Gets Real: Powering Robots, Logistics & Finance | IITB 2025

SVM Soft Margin Explained: Geometry, Optimization & Example | Machine Learning From Zero | L.33

SVM Soft Margin Explained: Geometry, Optimization & Example | Machine Learning From Zero | L.33

Lecture 18 | CS772 Deep Learning for NLP | Guest Lecture (Prof. Rohan Paul) | IIT Bombay | 2025

Lecture 18 | CS772 Deep Learning for NLP | Guest Lecture (Prof. Rohan Paul) | IIT Bombay | 2025

Graph Representation Learning: William L. Hamilton - 2021 McGill AI Learnathon

Graph Representation Learning: William L. Hamilton - 2021 McGill AI Learnathon

Lecture 29: CS217 | Human-Centered AI: Biases, Challenges, and Ethical Considerations | IITB 2025

Lecture 29: CS217 | Human-Centered AI: Biases, Challenges, and Ethical Considerations | IITB 2025

Lecture 4: CS772 | Deep Learning for NLP | Perceptron, Sigmoid, Softmax, POS | IIT Bombay 2025

Lecture 4: CS772 | Deep Learning for NLP | Perceptron, Sigmoid, Softmax, POS | IIT Bombay 2025

Lecture 5: CS772 | Deep Learning for NLP | Backpropagation | IIT Bombay | 2025

Lecture 5: CS772 | Deep Learning for NLP | Backpropagation | IIT Bombay | 2025

Lecture 3: CS626 POS Tagging (PART-1)| IIT Bombay | 2024

Lecture 3: CS626 POS Tagging (PART-1)| IIT Bombay | 2024

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]