Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Seminar Series: Stabilized Extended B-spline Material Point Method for Multi-field Problems

Автор: USACM Student Chapter

Загружено: 2024-02-25

Просмотров: 108

Описание:

"Stabilized Extended B-spline Material Point Method for Multi-field Problems"

Abstract:
Material point method (MPM), a hybrid Eulerian-Lagrangian particle-based continuum method, is a promising alternative to the traditional mesh based finite element method due to its robustness in handling extreme deformations and no-slip contact without additional algorithmic treatment. The use of B-spline shape functions in MPM effectively mitigates the classical numerical artifacts typically associated with linear shape functions, such as artificial fractures and cell crossing instabilities. Implicit MPM is preferred in modeling highly deformable materials like elastomers, hydrogels and biological tissues often characterized and used under quasi-static conditions. However, the B-spline MPM approach faces challenges with the ill-conditioning of the stiffness matrix in implicit models, due to fewer material points at boundaries, and complexities in imposing boundary conditions. Furthermore, modeling at quasi compressible limit, for coupled problems such as capturing large deformations along with water transport in hydrogels, require development of inf-sup stable mixed methods [1]. Here, we resolve these challenges using a subdivision stabilized mixed formulation, and further extending the subdivision-technique to extended B-spline technique. The extended B-spline shape functions addresses the ill-conditioning, where the displacement and pressure (or chemical potential) fields near the detected physical boundaries are interpolated to the interior ones using polynomials. The subdivision-based extended B-spline method achieves an oscillation-free, inf-sup stable mixed discretization in modeling nearly incompressible materials, such as elastomers or hydrogels, under instantaneous loading. Through the use of the penalty method, essential boundary conditions are weakly imposed directly on the Lagrangian particles, instead of the Eulerian background grid where the solution is obtained. The stability and accuracy of our mixed B-spline MPM is tested at extreme deformations and verified by comparing our result with benchmark problems, including incompressible cylindrical elastomer and hydrogels with a cavity inside under pressure loading. These examples showcase the effectiveness of developed particle-based methods in modeling practical soft material applications without any numerical instabilities.

[1] Madadi, A. Dortdivanlioglu, B. A subdivision-stabilized B-spline mixed material point method. Computer Methods in Applied Mechanics and Engineering (2024).

Presented by Ashkan Ali Madadi as part of the USACM Student Chapter Seminar Series on 31 January 2024

Bio:
Ashkan Ali Madadi is currently pursuing his Ph.D. in the MUSE program of the Civil Engineering department and a researcher in the DOE Center for Materials for Water and Energy Systems at the University of Texas at Austin, specializing in the computational mechanics of soft polymeric materials. He completed his M.Sc. and B.Sc. in Civil Engineering at Sharif University of Technology in 2020 and 2017, respectively. During his master’s program, Ashkan concentrated on the multiscale modeling of nanomaterials using coarse-grained molecular dynamics. In his ongoing doctoral research, Ashkan is exploring the Material Point Method (MPM) — a hybrid Eulerian-Lagrangian, particle-based continuum method for studying multiphysics problems. This method is recognized as a promising alternative to traditional mesh-based finite element methods, especially for its robustness in handling extreme deforma- tions and facilitating no-slip contact without the need for additional algorithmic treatments. Ashkan’s current work primarily focuses on resolving numerical challenges in particle based modeling using MPM to enhance its stability and accuracy. These foundational improvements are crucial for his subsequent application of MPM in modeling and improving the mechanics of ultra-filtration membranes. Ashkan aims to advance our understanding and development of polymeric membranes, showcasing the practical implications of his research in computational mechanics.

Seminar Series: Stabilized Extended B-spline Material Point Method for Multi-field Problems

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Closed-Form Error Bounds for Finite-Dimensional Koopman-Based Models and Implications for Learning

Closed-Form Error Bounds for Finite-Dimensional Koopman-Based Models and Implications for Learning

Conversation with Elon Musk | World Economic Forum Annual Meeting 2026

Conversation with Elon Musk | World Economic Forum Annual Meeting 2026

A Metamaterial That Bridges Air and Water

A Metamaterial That Bridges Air and Water

Claude Code Clearly Explained (and how to use it)

Claude Code Clearly Explained (and how to use it)

Ziemkiewicz mocno: Unia Europejska to zdychający Związek Sowiecki!

Ziemkiewicz mocno: Unia Europejska to zdychający Związek Sowiecki!

Введение в мир Геометрической Волновой Инженерии.  1-я часть.

Введение в мир Геометрической Волновой Инженерии. 1-я часть.

Почему стресс не является вектором?

Почему стресс не является вектором?

Golden Dust Particles Animation Background video | 4K Gold Dust

Golden Dust Particles Animation Background video | 4K Gold Dust

USACM Student Chapter Seminar Series

USACM Student Chapter Seminar Series

The Man Behind Google's AI Machine | Demis Hassabis Interview

The Man Behind Google's AI Machine | Demis Hassabis Interview

Невероятные свойства композитных материалов

Невероятные свойства композитных материалов

Seminar Series: Inverse-design of nonlin. mech. metamaterials via video denoising diffusion models

Seminar Series: Inverse-design of nonlin. mech. metamaterials via video denoising diffusion models

Линейные преобразования и матрицы | #3 Основы линейной алгебры

Линейные преобразования и матрицы | #3 Основы линейной алгебры

Визуализация гравитации

Визуализация гравитации

Claude Code Ends SaaS, the Gemini + Siri Partnership, and Math Finally Solves AI | #224

Claude Code Ends SaaS, the Gemini + Siri Partnership, and Math Finally Solves AI | #224

КОЗЫРЕВ - астрофизик ДОКАЗАЛ, что ВРЕМЯ это ЭНЕРГИЯ: дважды СИДЕЛ, приговорён к РАССТРЕЛУ

КОЗЫРЕВ - астрофизик ДОКАЗАЛ, что ВРЕМЯ это ЭНЕРГИЯ: дважды СИДЕЛ, приговорён к РАССТРЕЛУ

REPUBLIKA Sakiewicza TONIE | Dominika Wielowieyska, 23.01.2026

REPUBLIKA Sakiewicza TONIE | Dominika Wielowieyska, 23.01.2026

Почему Башенный Кран НЕ ПАДАЕТ?!

Почему Башенный Кран НЕ ПАДАЕТ?!

Задача века решена!

Задача века решена!

Nov 2025 ‘Inverse Design, Advanced Manufacturing, and Applications of Magneto-Active Soft Materials’

Nov 2025 ‘Inverse Design, Advanced Manufacturing, and Applications of Magneto-Active Soft Materials’

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: infodtube@gmail.com