Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Flow Separation - Boundary layer separation explained

Автор: AirShaper

Загружено: 2021-09-21

Просмотров: 75681

Описание:

For more information, visit https://www.airshaper.com or email [email protected]
----------------------------------------------------------------------------------------

In this video we’ll explain flow separation (or boundary layer separation).
In our previous video on boundary layers, we saw that the air close to the surface will stick to it, forming a boundary layer. But in some cases, it can become too difficult for the air to follow the curvature of the surface, causing it to detach. Let’s have a look at why this can happen.

When you look at air flowing across a flat plate, as in our previous video, the free stream velocity remains constant. Because of Bernoulli’s equation, which states that pressure changes with velocity, this means the pressure gradient in the X-direction is more or less to zero. Also, the pressure is imposed onto the boundary layer and so doesn’t really change much in the direction perpendicular to the surface either. That means the pressure gradient in both the x and y direction are close to zero.

But when the air flows around a curved surface, it speeds up and slows down. Take the flow around a cylinder for example: at the front, the pressure is the highest as the air comes to a complete standstill – this is the stagnation point. As the air then curves around the cylinder, it speeds up and this creates a drop in pressure. As the pressure goes down with increasing x, this is a negative pressure gradient, which is good: the air is being pushed downstream, overcoming the friction in the boundary layer, which gradually builds up.

The maximum velocity is reached somewhere around the midpoint of the cylinder, after which the air starts to slow down again. This means the pressure gradient is now reversed: as the air travels across the surface, the pressure goes up. This is what is called an “adverse” pressure gradient and the air is no longer driven but obstructed by the pressure difference: it has to flow into regions with higher pressure.

If the pressure gradient is positive or zero, as in the case of the flat plate, then the velocity gradient perpendicular to the wall is positive: the further you move away from the wall, the higher the velocity. But when the air travels against an adverse pressure gradient, the velocity profile is pushed back and this reduces the velocity gradient at the wall.

At some point, the velocity gradient becomes zero, which is the point where the flow separates or detaches. Beyond this point, the velocity profile is zero both at the wall, because of the no-slip condition, and at the inflection point, which is where the velocity crosses from negative into positive. In the negative velocity region, between the surface and the inflection point, the air flows in a direction opposite to the main flow – this is called a recirculation. The separated flow will now surf on top of this recirculation flow and the boundary layer and wake will continue to grow, which can have a negative effect on drag.

In reality, shapes can be much more complex than cylinders and flows can detach and reattach in various locations. Even on a smooth wing, the flow can detach and reattach. So, this is very much a 3-dimensional challenge and getting it right requires a careful analysis and optimization of local and global pressure gradients.

Also, keep in mind that flow separation can happen in both laminar and turbulent boundary layers. Turbulent boundary layers, however, carry more momentum and will typically stay attached to the surface further downstream compared to a laminar one – just check our video on golf ball dimples or vortex generators to learn more.

Flow Separation - Boundary layer separation explained

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Ford F150 Aerodynamics - How to add more than 10% range!

Ford F150 Aerodynamics - How to add more than 10% range!

Understanding Aerodynamic Drag

Understanding Aerodynamic Drag

В сторону: Отрыв пограничного слоя

В сторону: Отрыв пограничного слоя

Сверхзвуковые сопла. То, что произойдет дальше, вас ШОКИРУЕТ!

Сверхзвуковые сопла. То, что произойдет дальше, вас ШОКИРУЕТ!

What Causes Stall/Flow Separation? Adverse Pressure Gradient Explained

What Causes Stall/Flow Separation? Adverse Pressure Gradient Explained

Introduction to Boundary Layer Flow

Introduction to Boundary Layer Flow

Introductory Fluid Mechanics L19 p2 - The Boundary Layer Concept

Introductory Fluid Mechanics L19 p2 - The Boundary Layer Concept

Что такое пограничный слой? | Причины образования пограничного слоя | Типы и влияние пограничных ...

Что такое пограничный слой? | Причины образования пограничного слоя | Типы и влияние пограничных ...

ANSYS CFD Tutorial: Flow Around NACA (4415) Airfoil

ANSYS CFD Tutorial: Flow Around NACA (4415) Airfoil

Как работает аэробалансировка? Объяснение центра давления

Как работает аэробалансировка? Объяснение центра давления

Understanding Laminar and Turbulent Flow

Understanding Laminar and Turbulent Flow

Lecture 24 : Introduction to Boundary Layer Theory

Lecture 24 : Introduction to Boundary Layer Theory

Fluid Boundary layer and velocity profile animation (Fluid Mechanics)

Fluid Boundary layer and velocity profile animation (Fluid Mechanics)

Что такое пограничный слой? Объяснение ламинарных и турбулентных пограничных слоев.

Что такое пограничный слой? Объяснение ламинарных и турбулентных пограничных слоев.

Pressure Gradient Explained [Aero Fundamentals #66]

Pressure Gradient Explained [Aero Fundamentals #66]

Turbulent Flow is MORE Awesome Than Laminar Flow

Turbulent Flow is MORE Awesome Than Laminar Flow

Boundary Layers - Pressure Gradient Effects

Boundary Layers - Pressure Gradient Effects

Fluid Mechanics Lesson 13E: Boundary Layers with Pressure Gradients

Fluid Mechanics Lesson 13E: Boundary Layers with Pressure Gradients

[Aero Fundamentals #24] Flow Separation Explained

[Aero Fundamentals #24] Flow Separation Explained

Результаты вычислительной гидродинамики: как интерпретировать аэродинамический анализ

Результаты вычислительной гидродинамики: как интерпретировать аэродинамический анализ

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]