Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

DAFx17 Keynote 1: Julius Smith - History of Virtual Musical Instruments Based on Physical Modeling

Автор: AAG Edinburgh

Загружено: 2017-10-18

Просмотров: 3934

Описание:

Presented at the 20th International Conference on Digital Audio Effects (DAFx17)
Tuesday 5th September 2017, Edinburgh
http://dafx17.eca.ed.ac.uk/

Tutorial Abstract:
This presentation visits historical developments leading to today’s virtual musical instruments and effects based on physical modeling principles. It is hard not to begin with Daniel Bernoulli and d’Alembert who launched the modal representation (leading to both “additive” and “subtractive” synthesis) and the traveling-wave solution of the wave-equation for vibrating-strings, respectively, in the 18th century. Newtonian mechanics generally suffices mathematically for characterizing physical musical instruments and effects, although quantum mechanics is necessary for fully deriving the speed of sound in air. In addition to the basic ballistics of Newton’s Law f = ma, and spring laws relating force to displacement, friction models are needed for modeling the aggregate behavior of vast numbers of colliding particles. The resulting mathematical models generally consist of ordinary and partial differential equations expressing Newton’s Law, friction models, and perhaps other physical relationships such as temperature dependence. Analog circuits are similarly described. These differential-equation models are then solved in real time on a discrete time-space grid to implement musical instruments and effects. The external forces applied by the performer (or control voltages, etc.) are routed to virtual masses, springs, and/or friction-models, and they may impose moving boundary conditions for the discretized differential-equation solver. To achieve maximum quality per unit of computation, techniques from digital signal processing are typically used to implement the differential-equation solvers in ways that are numerically robust, energy aware, and minimizing computational complexity. In addition to reviewing selected historical developments, this presentation will try to summarize some of the known best practices for computational physical modeling in existing real-time virtual musical instruments and effects.

Speaker Bio:
Julius O. Smith teaches a music signal-processing course sequence and supervises related research at the Center for Computer Research in Music and Acoustics (CCRMA). He is formally a professor of music and (by courtesy) electrical engineering at Stanford University. In 1975, he received his BS/EE degree from Rice University, where he got a solid grounding in the field of digital signal processing and modeling for control. In 1983, he received the PhD/EE degree from Stanford University, specializing in techniques for digital filter design and system identification, with application to violin modeling. His work history includes the Signal Processing Department at Electromagnetic Systems Laboratories, Inc., working on systems for digital communications, the Adaptive Systems Department at Systems Control Technology, Inc., working on research problems in adaptive filtering and spectral estimation, and NeXT Computer, Inc., where he was responsible for sound, music, and signal processing software for the NeXT computer workstation. Prof. Smith is a Fellow of the Audio Engineering Society and the Acoustical Society of America. He is the author of four online books and numerous research publications in his field.

DAFx17 Keynote 1: Julius Smith - History of Virtual Musical Instruments Based on Physical Modeling

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

DAFx17 Keynote 2: Avery Wang - Robust Indexing and Search

DAFx17 Keynote 2: Avery Wang - Robust Indexing and Search

Физическое моделирование изнутри | Интервью с Джулиусом Смитом — Эпизод 2/4

Физическое моделирование изнутри | Интервью с Джулиусом Смитом — Эпизод 2/4

Spectral Audio Modeling: Why Did It Evolve and Do We Need It Now? - Julius Smith - ADC23

Spectral Audio Modeling: Why Did It Evolve and Do We Need It Now? - Julius Smith - ADC23

Julius Smith - Sound synthesis based on physical models

Julius Smith - Sound synthesis based on physical models

Физическое моделирование стало ДЕЙСТВИТЕЛЬНО хорошим 🤯

Физическое моделирование стало ДЕЙСТВИТЕЛЬНО хорошим 🤯

DAFx17 Keynote 3: Miller Puckette - Time domain Manipulation via STFTs

DAFx17 Keynote 3: Miller Puckette - Time domain Manipulation via STFTs

2010-2011 CIRMMT Distinguished Lectures

2010-2011 CIRMMT Distinguished Lectures

Для Чего РЕАЛЬНО Нужен был ГОРБ Boeing 747?

Для Чего РЕАЛЬНО Нужен был ГОРБ Boeing 747?

How to Make Realistic & Expressive Sounds: Physical Modeling in Vital

How to Make Realistic & Expressive Sounds: Physical Modeling in Vital

From physical modeling and FAUST to GeoShred

From physical modeling and FAUST to GeoShred

Physical Modeling 101: Physical Modeling Explored - Sampling vs Modeling

Physical Modeling 101: Physical Modeling Explored - Sampling vs Modeling

Почему любители часто круче «профессионалов»?

Почему любители часто круче «профессионалов»?

49 минут, которые ИЗМЕНЯТ ваше понимание Вселенной | Владимир Сурдин

49 минут, которые ИЗМЕНЯТ ваше понимание Вселенной | Владимир Сурдин

Разведчик о том, как использовать людей

Разведчик о том, как использовать людей

Why Musicians and Engineers must collaborate - Julius Smith Interview

Why Musicians and Engineers must collaborate - Julius Smith Interview

Программа СССР «Луна» 1-3: Темная сторона Луны

Программа СССР «Луна» 1-3: Темная сторона Луны

«Нас ждут тектонические сдвиги»: зачем Трамп создал кризис вокруг Гренландии

«Нас ждут тектонические сдвиги»: зачем Трамп создал кризис вокруг Гренландии

Теренс Тао о том, как Григорий Перельман решил гипотезу Пуанкаре | Лекс Фридман

Теренс Тао о том, как Григорий Перельман решил гипотезу Пуанкаре | Лекс Фридман

Коммутируемый синтез — Физическое моделирование в MSoundfactory, часть 6

Коммутируемый синтез — Физическое моделирование в MSoundfactory, часть 6

DAFx17 Edinburgh

DAFx17 Edinburgh

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: infodtube@gmail.com