Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

ETH Zürich DLSC: Physics-Informed Neural Networks - Applications

Автор: CAMLab, ETH Zürich

Загружено: 2023-06-12

Просмотров: 28028

Описание:

↓↓↓ LECTURE OVERVIEW BELOW ↓↓↓
ETH Zürich Deep Learning in Scientific Computing 2023
Lecture 5: Physics-Informed Neural Networks - Applications

Course Website (links to slides and tutorials): https://camlab.ethz.ch/teaching/deep-...

Lecturers: Ben Moseley and Siddhartha Mishra

▬ Lecture Content ▬▬▬▬▬▬▬▬▬
0:00 - Lecture overview
1:45 - What is a physics-informed neural network (PINN)?
11:59 - PINNs as a general framework
17:17 - PINNs for solving the Burgers' equation
20:20 - How to train PINNs
28:34 - 🔴 Live coding a PINN - part 1 | Code: github.com/benmoseley/DLSC-2023
39:42 - Training considerations
44:27 - [break - please skip]
53:07 - Simulation with PINNs
1:00:14 - Solving inverse problems with PINNs
1:14:00 - 🔴 Live coding a PINN - part 2 | Code: https://github.com/benmoseley/DLSC-2023
1:24:10 - Equation discovery with PINNs

▬ Course Overview ▬▬▬▬▬▬▬▬▬
Lecture 1: Course Introduction    • ETH Zürich DLSC: Course Introduction  
Lecture 2: Introduction to Deep Learning Part 1    • ETH Zürich DLSC: Introduction to Deep Lear...  
Lecture 3: Introduction to Deep Learning Part 2    • ETH Zürich DLSC: Introduction to Deep Lear...  
Lecture 4: Physics-Informed Neural Networks - Introduction    • ETH Zürich DLSC: Physics-Informed Neural N...  
Lecture 5: Physics-Informed Neural Networks - Applications    • ETH Zürich DLSC: Physics-Informed Neural N...  
Lecture 6: Physics-Informed Neural Networks - Limitations and Extensions    • ETH Zürich DLSC: Physics-Informed Neural N...  
Lecture 7: Introduction to Operator Learning Part 1    • ETH Zürich DLSC: Introduction to Operator ...  
Lecture 8: Introduction to Operator Learning Part 2    • ETH Zürich DLSC: Introduction to Operator ...  
Lecture 9: Deep Operator Networks    • ETH Zürich DLSC: Deep Operator Networks  
Lecture 10: Neural Operators    • ETH Zürich DLSC: Neural Operators  
Lecture 11: Fourier Neural Operators and Convolutional Neural Operators    • ETH Zürich DLSC: Fourier Neural Operators ...  
Lecture 12: Introduction to Differentiable Physics Part 1    • ETH Zürich DLSC: Introduction to Different...  
Lecture 13: Introduction to Differentiable Physics Part 2    • ETH Zürich DLSC: Introduction to Different...  

▬ Course Learning Objectives ▬▬▬▬▬
The objective of this course is to introduce students to advanced applications of deep learning in scientific computing. The focus will be on the design and implementation of algorithms as well as on the underlying theory that guarantees reliability of the algorithms. We provide several examples of applications in science and engineering where deep learning based algorithms outperform state of the art methods.

By the end of the course you should be:
Aware of advanced applications of deep learning in scientific computing
Familiar with the design, implementation and theory of these algorithms
Understand the pros/cons of using deep learning
Understand key scientific machine learning concepts and themes

ETH Zürich DLSC: Physics-Informed Neural Networks - Applications

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

ETH Zürich DLSC: Physics-Informed Neural Networks - Limitations and Extensions

ETH Zürich DLSC: Physics-Informed Neural Networks - Limitations and Extensions

How to Design Scalable Physics-Informed Neural Networks - Workshop at CWI, Amsterdam

How to Design Scalable Physics-Informed Neural Networks - Workshop at CWI, Amsterdam

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

Physics-Informed Neural Networks (PINNs) - An Introduction - Ben Moseley | Jousef Murad

Physics-Informed Neural Networks (PINNs) - An Introduction - Ben Moseley | Jousef Murad

ETH Zürich AISE: Physics-Informed Neural Networks – Introduction

ETH Zürich AISE: Physics-Informed Neural Networks – Introduction

Самый важный алгоритм в машинном обучении

Самый важный алгоритм в машинном обучении

ICML 2024 Tutorial

ICML 2024 Tutorial"Machine Learning on Function spaces #NeuralOperators"

Физически-информированные нейронные сети (PINN) [Машинное обучение с учетом физики]

Физически-информированные нейронные сети (PINN) [Машинное обучение с учетом физики]

MIT Introduction to Deep Learning | 6.S191

MIT Introduction to Deep Learning | 6.S191

Нейронные сети на основе физики для механики жидкости

Нейронные сети на основе физики для механики жидкости

Градиентный спуск, как обучаются нейросети | Глава 2, Глубинное обучение

Градиентный спуск, как обучаются нейросети | Глава 2, Глубинное обучение

From Neural PDEs to Neural Operators: Blending data and physics by Prof. George Karniadakis

From Neural PDEs to Neural Operators: Blending data and physics by Prof. George Karniadakis

Нейронные ОДУ (НОДУ) [Машинное обучение с учетом физики]

Нейронные ОДУ (НОДУ) [Машинное обучение с учетом физики]

Physics-Informed Neural Networks with MATLAB

Physics-Informed Neural Networks with MATLAB

Physics Informed Machine Learning: High Level Overview of AI and ML in Science and Engineering

Physics Informed Machine Learning: High Level Overview of AI and ML in Science and Engineering

ETH Zürich AISE: Symbolic Regression and Model Discovery

ETH Zürich AISE: Symbolic Regression and Model Discovery

ETH Zürich DLSC: Introduction to Deep Learning Part 1

ETH Zürich DLSC: Introduction to Deep Learning Part 1

Data-driven model discovery:  Targeted use of deep neural networks for physics and engineering

Data-driven model discovery: Targeted use of deep neural networks for physics and engineering

ML Workshop Physics-Informed Neural Networks and Neural Operators [Part 2]

ML Workshop Physics-Informed Neural Networks and Neural Operators [Part 2]

Designing Next-Generation Numerical Methods with Physics-Informed Neural Networks

Designing Next-Generation Numerical Methods with Physics-Informed Neural Networks

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]