Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Stanford Webinar: When Your Big Data Seems Too Small

Автор: Stanford Online

Загружено: 2017-03-17

Просмотров: 24920

Описание:

A Stanford Webinar presented by: Stanford's Databases and the Foundations in Computer Science graduate certificate programs
"When Your Big Data Seems Too Small - Accurate Inferences Beyond the Empirical Distribution"
Speaker: Gregory Valiant, Stanford University

Many of the techniques and algorithms that are used in machine learning and data sciences assume that the empirical distribution of the available data is an accurate approximation of the primary phenomena being investigated. However, when dealing with complex or high dimensional distributions, even large datasets can fail to accurately represent its core. As examples, in large genomic datasets many rare genetic variants are unobserved, and in a large natural language corpus, many reasonable sequences of five words might not be observed.

Join Stanford’s Dr. Gregory Valiant as he discusses the difficulties of and solutions for making accurate inferences in this challenging regime, in which the empirical distribution of the available data is misleading. Learn how to extract accurate information about the underlying distribution, including information about the portion that has not been observed in the given dataset.


You will learn:

An intuitive approach for reasoning about the distribution that underlies a given dataset
Techniques that leverage this intuition, and reveal the structure of the underlying distribution---including the structure of the unseen portion of it from which no datapoints have been observed
Practical implications of these techniques for the analysis of genomic datasets, including how to estimate the value of sequencing additional human genomes

About the Speaker:
Gregory Valiant, PhD is an Assistant Professor in Stanford's Computer Science Department. Some of his recent projects focus on designing algorithms for accurately inferring information about complex distributions, when given surprisingly little data. More broadly, his research interests are in algorithms, learning, applied probability, and statistics, and evolution. Prior to joining Stanford, Dr. Valiant was a postdoc at Microsoft Research, New England, and received his PhD from Berkeley in Computer Science, and BA in Math from Harvard.


0:00 Introduction
0:11 Today's Speaker
6:33 Beyond the Empirical Distribution (Part 1)
14:16 Estimation Beyond the Empirical Distribution
16:29 R.A. Fisher's Butterflies
26:22 Reasoning Beyond the Empirical Distribution
29:11 Recovering "frequency spectrum"
30:17 Learning the distribution, up to relabeling
33:28 GWAS inferences, predictions from 60k genomes
33:54 GWAS inferences (validation)
35:45 Estimating Covariance Spectrum
36:40 Empirical Approach
40:05 Main Theorem (informal)
40:09 Summary and Final Thoughts We discussed three different settings. In all three
41:42 Q&A
47:29 Empirical Results

Stanford Webinar:  When Your Big Data Seems Too Small

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Stanford Webinar - How to Analyze Research Data: Kristin Sainani

Stanford Webinar - How to Analyze Research Data: Kristin Sainani

Stanford Webinar: Common Pitfalls of A/B Testing and How to Avoid Them

Stanford Webinar: Common Pitfalls of A/B Testing and How to Avoid Them

Stanford CS230 | Autumn 2025 | Lecture 9: Career Advice in AI

Stanford CS230 | Autumn 2025 | Lecture 9: Career Advice in AI

Stanford Webinar - How to Lead [Not Just Survive] Digital Transformation, Pamela Hinds

Stanford Webinar - How to Lead [Not Just Survive] Digital Transformation, Pamela Hinds

Stanford Webinar - How Artificial Intelligence Can Improve Healthcare

Stanford Webinar - How Artificial Intelligence Can Improve Healthcare

Моделирование Монте-Карло

Моделирование Монте-Карло

Дикая Камчатка. Империя Воды и Огня | WILD EARTH | Полный документальный фильм о дикой природе |

Дикая Камчатка. Империя Воды и Огня | WILD EARTH | Полный документальный фильм о дикой природе |

Русский след и Майкл Джексон. Чем примечателен новый компромат на Трампа

Русский след и Майкл Джексон. Чем примечателен новый компромат на Трампа

Robert Sapolsky: The Biology of Humans at Our Best and Worst

Robert Sapolsky: The Biology of Humans at Our Best and Worst

Как производятся микрочипы? 🖥️🛠️ Этапы производства процессоров

Как производятся микрочипы? 🖥️🛠️ Этапы производства процессоров

Stanford Webinar - Business Model Transformation and Innovation

Stanford Webinar - Business Model Transformation and Innovation

Основные теоремы в теории игр — Алексей Савватеев на ПостНауке

Основные теоремы в теории игр — Алексей Савватеев на ПостНауке

Теорема Байеса, геометрия изменения убеждений

Теорема Байеса, геометрия изменения убеждений

Stanford Webinar with Dan Boneh - Hacking AI: Security & Privacy of Machine Learning Models

Stanford Webinar with Dan Boneh - Hacking AI: Security & Privacy of Machine Learning Models

Программа «Статус» с Екатериной Шульман и Максимом Курниковым | 23.12.2025

Программа «Статус» с Екатериной Шульман и Максимом Курниковым | 23.12.2025

Краткое объяснение больших языковых моделей

Краткое объяснение больших языковых моделей

Как Сделать Настольный ЭЛЕКТРОЭРОЗИОННЫЙ Станок?

Как Сделать Настольный ЭЛЕКТРОЭРОЗИОННЫЙ Станок?

Stanford Webinar:  Introduction to Growth Hacking

Stanford Webinar: Introduction to Growth Hacking

Lec 1 | MIT 6.00 Introduction to Computer Science and Programming, Fall 2008

Lec 1 | MIT 6.00 Introduction to Computer Science and Programming, Fall 2008

ДНК создал Бог? Самые свежие научные данные о строении. Как работает информация для жизни организмов

ДНК создал Бог? Самые свежие научные данные о строении. Как работает информация для жизни организмов

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]