Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Learning to Communicate with Deep Multi-Agent Reinforcement Learning - Jakob Foerster

Автор: RISE SICS

Загружено: 2020-01-03

Просмотров: 7970

Описание:

We consider the problem of multiple agents sensing and acting in environments with the goal of maximising their shared utility. In these environments, agents must learn communication protocols in order to share information that is needed to solve the tasks. By embracing deep neural networks, we are able to demonstrate end-to-end learning of protocols in complex environments, when no prior communication protocol is provided.


Jakob Foerster is a PhD student in AI at the University of Oxford under the supervision of Shimon Whiteson and Nando de Freitas. Using deep reinforcement learning he studies the emergence of communication in multi-agent AI systems. Prior to his PhD Jakob spent four years working at Google and Goldman Sachs. Previously he has also worked on a number of research projects in systems neuroscience, including work at MIT and the Weizmann Institute.

Learning to Communicate with Deep Multi-Agent Reinforcement Learning - Jakob Foerster

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Эмерджентный интеллект в мультиагентной системе управления группой роботов в сети без маршрутизации

Эмерджентный интеллект в мультиагентной системе управления группой роботов в сети без маршрутизации

Stefano V. Albrecht - From Deep Reinforcement Learning to LLM-based Agents

Stefano V. Albrecht - From Deep Reinforcement Learning to LLM-based Agents

"Learning to Communicate in Multi-Agent Systems" - Amanda Prorok

AlphaStar: Grandmaster level in StarCraft II using multi-agent reinforcement learning

AlphaStar: Grandmaster level in StarCraft II using multi-agent reinforcement learning

Factored Value Functions for Cooperative Multi-Agent Reinforcement Learning

Factored Value Functions for Cooperative Multi-Agent Reinforcement Learning

Richard Sutton – Father of RL thinks LLMs are a dead end

Richard Sutton – Father of RL thinks LLMs are a dead end

MIT 6.S091: Introduction to Deep Reinforcement Learning (Deep RL)

MIT 6.S091: Introduction to Deep Reinforcement Learning (Deep RL)

Обучение с подкреплением со стабильными базовыми уровнями 3 — Введение (стр. 1)

Обучение с подкреплением со стабильными базовыми уровнями 3 — Введение (стр. 1)

Joseph Suarez Thesis Defense - Neural MMO

Joseph Suarez Thesis Defense - Neural MMO

Deep RL Bootcamp  Lecture 6: Nuts and Bolts of Deep RL Experimentation

Deep RL Bootcamp Lecture 6: Nuts and Bolts of Deep RL Experimentation

SESSION 1 | Multi-Agent Reinforcement Learning: Foundations and Modern Approaches | IIIA-CSIC Course

SESSION 1 | Multi-Agent Reinforcement Learning: Foundations and Modern Approaches | IIIA-CSIC Course

Deep Reinforcement Learning for Multi-Agent Interaction - Stefano Albrecht

Deep Reinforcement Learning for Multi-Agent Interaction - Stefano Albrecht

Jakob Foerster - Learning to Cooperate, Communicate and Coordinate @ UCL DARK

Jakob Foerster - Learning to Cooperate, Communicate and Coordinate @ UCL DARK

Reinforcement Learning Series: Overview of Methods

Reinforcement Learning Series: Overview of Methods

Introduction to Multi-Agent Reinforcement Learning

Introduction to Multi-Agent Reinforcement Learning

Counterfactual Multi-Agent Policy Gradients

Counterfactual Multi-Agent Policy Gradients

Multiagent Reinforcement Learning: Rollout and Policy Iteration

Multiagent Reinforcement Learning: Rollout and Policy Iteration

Но что такое нейронная сеть? | Глава 1. Глубокое обучение

Но что такое нейронная сеть? | Глава 1. Глубокое обучение

Deep Multiagent Reinforcement Learning for Partially Observable Parameterized Environments

Deep Multiagent Reinforcement Learning for Partially Observable Parameterized Environments

Proximal Policy Optimization Explained

Proximal Policy Optimization Explained

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: infodtube@gmail.com