Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

ImageNet Moment for Reinforcement Learning?

Автор: Machine Learning Street Talk

Загружено: 18 февр. 2025 г.

Просмотров: 24 439 просмотров

Описание:

Prof. Jakob Foerster, a leading AI researcher at Oxford University and Meta, and Chris Lu, a researcher at OpenAI -- they explain how AI is moving beyond just mimicking human behaviour to creating truly intelligent agents that can learn and solve problems on their own. Foerster champions open-source AI for responsible, decentralised development. He addresses AI scaling, goal misalignment (Goodhart's Law), and the need for holistic alignment, offering a quick look at the future of AI and how to guide it.

SPONSOR MESSAGES:
***
CentML offers competitive pricing for GenAI model deployment, with flexible options to suit a wide range of models, from small to large-scale deployments. Check out their super fast DeepSeek R1 hosting!
https://centml.ai/pricing/

Tufa AI Labs is a brand new research lab in Zurich started by Benjamin Crouzier focussed on o-series style reasoning and AGI. They are hiring a Chief Engineer and ML engineers. Events in Zurich.

Goto https://tufalabs.ai/
***

TRANSCRIPT/REFS:
https://www.dropbox.com/scl/fi/yqjszh...

Prof. Jakob Foerster
https://x.com/j_foerst
https://www.jakobfoerster.com/
University of Oxford Profile:
https://eng.ox.ac.uk/people/jakob-foe...

Chris Lu:
https://chrislu.page/

TOC
1. GPU Acceleration and Training Infrastructure
[00:00:00] 1.1 ARC Challenge Criticism and FLAIR Lab Overview
[00:01:25] 1.2 GPU Acceleration and Hardware Lottery in RL
[00:05:50] 1.3 Data Wall Challenges and Simulation-Based Solutions
[00:08:40] 1.4 JAX Implementation and Technical Acceleration

2. Learning Frameworks and Policy Optimization
[00:14:18] 2.1 Evolution of RL Algorithms and Mirror Learning Framework
[00:15:25] 2.2 Meta-Learning and Policy Optimization Algorithms
[00:21:47] 2.3 Language Models and Benchmark Challenges
[00:28:15] 2.4 Creativity and Meta-Learning in AI Systems

3. Multi-Agent Systems and Decentralization
[00:31:24] 3.1 Multi-Agent Systems and Emergent Intelligence
[00:38:35] 3.2 Swarm Intelligence vs Monolithic AGI Systems
[00:42:44] 3.3 Democratic Control and Decentralization of AI Development
[00:46:14] 3.4 Open Source AI and Alignment Challenges
[00:49:31] 3.5 Collaborative Models for AI Development

REFS
[[00:00:05] ARC Benchmark, Chollet
https://github.com/fchollet/ARC-AGI

[00:03:05] DRL Doesn't Work, Irpan
https://www.alexirpan.com/2018/02/14/...

[00:05:55] AI Training Data, Data Provenance Initiative
https://www.nytimes.com/2024/07/19/te...

[00:06:10] JaxMARL, Foerster et al.
https://arxiv.org/html/2311.10090v5

[00:08:50] M-FOS, Lu et al.
https://arxiv.org/abs/2205.01447

[00:09:45] JAX Library, Google Research
https://github.com/jax-ml/jax

[00:12:10] Kinetix, Mike and Michael
https://arxiv.org/abs/2410.23208

[00:12:45] Genie 2, DeepMind
https://deepmind.google/discover/blog...

[00:14:42] Mirror Learning, Grudzien, Kuba et al.
https://arxiv.org/abs/2208.01682

[00:16:30] Discovered Policy Optimisation, Lu et al.
https://arxiv.org/abs/2210.05639

[00:24:10] Goodhart's Law, Goodhart
https://en.wikipedia.org/wiki/Goodhar...

[00:25:15] LLM ARChitect, Franzen et al.
https://github.com/da-fr/arc-prize-20...

[00:28:55] AlphaGo, Silver et al.
https://arxiv.org/pdf/1712.01815.pdf

[00:30:10] Meta-learning, Lu, Towers, Foerster
https://direct.mit.edu/isal/proceedin...

[00:31:30] Emergence of Pragmatics, Yuan et al.
https://arxiv.org/abs/2001.07752

[00:34:30] AI Safety, Amodei et al.
https://arxiv.org/abs/1606.06565

[00:35:45] Intentional Stance, Dennett
https://plato.stanford.edu/entries/et...

[00:39:25] Multi-Agent RL, Zhou et al.
https://arxiv.org/pdf/2305.10091

[00:41:00] Open Source Generative AI, Foerster et al.
https://arxiv.org/abs/2405.08597

[00:43:25] Manhattan Project, Wellerstein
https://ethos.lps.library.cmu.edu/art...

[00:49:35] Llama 3, Meta AI
https://ai.meta.com/blog/meta-llama-3/

[00:49:50] CERN Collaboration, Castelvecchi
https://www.nature.com/articles/natur...

ImageNet Moment for Reinforcement Learning?

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

How AI Is Unlocking the Secrets of Nature and the Universe | Demis Hassabis | TED

How AI Is Unlocking the Secrets of Nature and the Universe | Demis Hassabis | TED

Reinforcement Learning for Agents - Will Brown, ML Researcher at Morgan Stanley

Reinforcement Learning for Agents - Will Brown, ML Researcher at Morgan Stanley

The Hunt for a New Kind of Magnet to Power the Future | Bloomberg Primer

The Hunt for a New Kind of Magnet to Power the Future | Bloomberg Primer

Introduction to Generative AI

Introduction to Generative AI

NVIDIA Cosmos: как создать СОЗНАНИЕ? | РАЗБОР

NVIDIA Cosmos: как создать СОЗНАНИЕ? | РАЗБОР

Что не так с Западом? Мигранты, левые, цензура / вДудь

Что не так с Западом? Мигранты, левые, цензура / вДудь

Музыка для работы — Deep Focus Mix для программирования, кодирования

Музыка для работы — Deep Focus Mix для программирования, кодирования

Form Styling Essentials | The basics to modern CSS tips & tricks

Form Styling Essentials | The basics to modern CSS tips & tricks

50 шедевров классической музыки для отдыха и души | Бетховен, Моцарт, Шопен, Бах, Вивальди

50 шедевров классической музыки для отдыха и души | Бетховен, Моцарт, Шопен, Бах, Вивальди

AI, Machine Learning, Deep Learning and Generative AI Explained

AI, Machine Learning, Deep Learning and Generative AI Explained

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]