Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

quarter CNN: Faster R-CNN

Автор: Shih-Shinh Huang

Загружено: 2020-07-11

Просмотров: 2567

Описание:

This lecture introduces an object detector called Faster R-CNN.
It was proposed in the paper entitled as "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Network”, NIPS, 2015, and IEEE Trans. on PAMI, 2017.

The outline of this lecture includes:
(1) Introduction about what object detection is, the Faster R-CNN background, and its architecture overview.
(2) Network ingredients about the components of Faster R-CNN including region proposal network, RoI pooling, and detection network.
(3)Faster R-CNN training about the training steps and two defined loss functions including RPN loss and detection loss.

0:00 Outline
1:12 About Object Detection
1:49 Background
3:25 Architecture Overview
6:58 Region Proposal Network(RPN)
11:01 RoI Pooling
12:15 Detection Network
14:57 Training Overview
16:41 RPN Loss
20:13 Detection Loss

Any comments are welcome. (email: [email protected])
All resources are available on the website (http://quarter.tw)

quarter CNN: Faster R-CNN

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

array(10) { [0]=> object(stdClass)#5548 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "itjQT-gFQBY" ["related_video_title"]=> string(50) "Faster R-CNN Explanation | Region Proposal Network" ["posted_time"]=> string(19) "1 год назад" ["channelName"]=> string(12) "ExplainingAI" } [1]=> object(stdClass)#5521 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "0tBhRfEzUWs" ["related_video_title"]=> string(42) "quarter CNN: Region Proposal Network (RPN)" ["posted_time"]=> string(19) "5 лет назад" ["channelName"]=> string(16) "Shih-Shinh Huang" } [2]=> object(stdClass)#5546 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "GXYfQsj8RU0" ["related_video_title"]=> string(34) "quarter CNN: RoI Pooling and Align" ["posted_time"]=> string(21) "4 года назад" ["channelName"]=> string(16) "Shih-Shinh Huang" } [3]=> object(stdClass)#5553 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "raOzD5x2z-M" ["related_video_title"]=> string(58) "quarter CNN: Feature Pyramid Networks for Object Detection" ["posted_time"]=> string(21) "3 года назад" ["channelName"]=> string(16) "Shih-Shinh Huang" } [4]=> object(stdClass)#5532 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "JLidIrekDbg" ["related_video_title"]=> string(59) "quarter: DIP Hough Transform A Case Study of Line Detection" ["posted_time"]=> string(21) "3 года назад" ["channelName"]=> string(16) "Shih-Shinh Huang" } [5]=> object(stdClass)#5550 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "blWdjRUPP6E" ["related_video_title"]=> string(72) "Разведчик о том, как использовать людей" ["posted_time"]=> string(25) "2 недели назад" ["channelName"]=> string(18) "Коллектив" } [6]=> object(stdClass)#5545 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "qC4yEiJOJtM" ["related_video_title"]=> string(100) "Faster-RCNN finetuning with PyTorch. Object detection using PyTorch. Custom dataset. Wheat detection" ["posted_time"]=> string(21) "2 года назад" ["channelName"]=> string(14) "Datum Learning" } [7]=> object(stdClass)#5555 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "TB-fdISzpHQ" ["related_video_title"]=> string(28) "Lecture 15: Object Detection" ["posted_time"]=> string(21) "4 года назад" ["channelName"]=> string(15) "Michigan Online" } [8]=> object(stdClass)#5531 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "r0vElts5pb0" ["related_video_title"]=> string(126) "USB HID + запуск хоть чего-то на разных микроконтроллерах • C • Live coding" ["posted_time"]=> string(25) "3 недели назад" ["channelName"]=> string(12) "Olga Pavlova" } [9]=> object(stdClass)#5549 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "Or9QSDqzOK0" ["related_video_title"]=> string(50) "quarter RNN: Simple Recurrent Neural Network (RNN)" ["posted_time"]=> string(21) "2 года назад" ["channelName"]=> string(16) "Shih-Shinh Huang" } }
Faster R-CNN Explanation | Region Proposal Network

Faster R-CNN Explanation | Region Proposal Network

quarter CNN: Region Proposal Network (RPN)

quarter CNN: Region Proposal Network (RPN)

quarter CNN: RoI Pooling and Align

quarter CNN: RoI Pooling and Align

quarter CNN: Feature Pyramid Networks for Object Detection

quarter CNN: Feature Pyramid Networks for Object Detection

quarter: DIP Hough Transform A Case Study of Line Detection

quarter: DIP Hough Transform A Case Study of Line Detection

Разведчик о том, как использовать людей

Разведчик о том, как использовать людей

Faster-RCNN finetuning with PyTorch. Object detection using PyTorch. Custom dataset. Wheat detection

Faster-RCNN finetuning with PyTorch. Object detection using PyTorch. Custom dataset. Wheat detection

Lecture 15: Object Detection

Lecture 15: Object Detection

USB HID + запуск хоть чего-то на разных микроконтроллерах • C • Live coding

USB HID + запуск хоть чего-то на разных микроконтроллерах • C • Live coding

quarter RNN: Simple Recurrent Neural Network (RNN)

quarter RNN: Simple Recurrent Neural Network (RNN)

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]