Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

How to Build a Stock Screener in Python | TA-Lib, yFinance & Technical Indicators

Автор: QuantInsti Quantitative Learning

Загружено: 2025-07-31

Просмотров: 26935

Описание:

Learn how to become a professional quant or systematic trader with EPAT® – the Executive Programme in Algorithmic Trading by QuantInsti:
https://www.quantinsti.com/epat
Your Algorithmic Trading Journey begins here!
👉 Learn More & Enroll: https://www.quantinsti.com/epat?utm_s...

-------------------------
Free Quantitative Trading Learning Track: 34 Hours of In-Depth Training in Python, Machine Learning, and Trading Strategies for Beginners. Enroll Now: https://quantra.quantinsti.com/learni...
______________

Finding trades starts with a robust stock screener. In this tutorial, Mohak Pachisia, Senior Quant at QuantInsti, demonstrates how to code a full-featured market scanner in Python. You will learn how to pull multi-ticker data with yfinance, compute technical indicators with TA-Lib, and generate composite scores that highlight the most bullish and bearish names in the Dow Jones.

Access the Python Notebook here: https://blog.quantinsti.com/momentum-...

The session begins by explaining why a custom screener is superior to off-the-shelf platforms. Mohak then imports key libraries including Pandas, NumPy, Matplotlib, Seaborn, and TA-Lib, and shows how to download historical prices for dozens of symbols in one line of code. Next, you will calculate 50-day and 200-day moving averages, RSI values, and custom volume spike metrics. Each indicator is normalized to a minus-one to plus-one scale so they can be combined into a single ranking score.

With the scoring model in place, Mohak builds a heat map that instantly reveals long and short candidates. You will see how to interpret these rankings, how to adjust thresholds, and how to feed the screener into backtesting or live-trading workflows. The tutorial closes with guidance on scaling the framework to hundreds of stocks, ETFs, or crypto pairs, and how to automate alerts.

This video is perfect for algorithmic traders, portfolio managers, data scientists, and learners in the EPAT and Quantra programs who want to strengthen their research pipeline before backtesting a trading strategy.

What You Will Learn
-Why custom stock screeners improve idea generation
How to build a stock screener in python
How to collect multi-ticker price data efficiently with yfinance
-Calculating technical indicators such as moving averages, RSI, and volume spikes
-Normalizing indicators and creating a composite momentum score
-Ranking assets and visualizing results with a heat map
-Tips for scaling the screener to larger universes and automated alerts


About the Speaker
Mohak Pachisia is a Senior Quantitative Researcher at QuantInsti, specializing in trading strategy development, financial modeling, and quantitative research. Before joining QuantInsti, he worked in the Risk and Quant Solutions division at Evalueserve, where he also led the learning and development function for the Quant team.

Chapter Timestamps
00:00 Introduction to custom stock screeners
01:00 Why build your own market scanner
02:45 Setting up Python and key libraries
05:15 Downloading Dow Jones constituents with yfinance
07:45 Computing 50-day and 200-day moving averages
10:30 Measuring trend strength with distance and slope metrics
13:45 Adding RSI momentum and volume-spike indicators
17:30 Combining indicators into a composite ranking score
20:30 Visualising bullish and bearish stocks with a heat map
23:30 Interpreting screener output for trade ideas
26:00 Scaling the screener to more symbols and live data feeds
28:30 Summary and next steps

#StockScreener, #MarketScanner, #PythonTrading, #AlgorithmicTrading, #BacktestingATradingStrategy, #TechnicalAnalysis, #QuantitativeFinance, #TALib, #QuantInsti, #EPAT, #Quantra, #TradingSignals

stock screener, market scanner, python stock screener, building a market scanner, technical analysis python, ta lib tutorial, yfinance python

How to Build a Stock Screener in Python | TA-Lib, yFinance & Technical Indicators

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Understanding Portfolio Optimization: Risk, Return & Constraints

Understanding Portfolio Optimization: Risk, Return & Constraints

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

Trading Psychology | Why Normal Doesn’t Make Money | Part 1

Trading Psychology | Why Normal Doesn’t Make Money | Part 1

4 Hours Chopin for Studying, Concentration & Relaxation

4 Hours Chopin for Studying, Concentration & Relaxation

10 категорий возврата к среднему значению: парная торговля, VIX и машинное обучение.

10 категорий возврата к среднему значению: парная торговля, VIX и машинное обучение.

Но что такое нейронная сеть? | Глава 1. Глубокое обучение

Но что такое нейронная сеть? | Глава 1. Глубокое обучение

Learn Pandas in 30 Minutes - Python Pandas Tutorial

Learn Pandas in 30 Minutes - Python Pandas Tutorial

Excel против Power BI против SQL против Python | Сравнение на фондовом рынке

Excel против Power BI против SQL против Python | Сравнение на фондовом рынке

👩‍💻 Python for Beginners Tutorial

👩‍💻 Python for Beginners Tutorial

Стратегия канала Дончиана: окончательный тест на Python и 3 убойных варианта

Стратегия канала Дончиана: окончательный тест на Python и 3 убойных варианта

How to make a Video Game - Godot Beginner Tutorial

How to make a Video Game - Godot Beginner Tutorial

I Built An End-To-End Quant Hedge Fund In Python: The Behind-the-Scenes (It’s Wild) [Part #1]

I Built An End-To-End Quant Hedge Fund In Python: The Behind-the-Scenes (It’s Wild) [Part #1]

How I Nailed Trading with the MACD Indicator (Step-by-Step Guide)

How I Nailed Trading with the MACD Indicator (Step-by-Step Guide)

Deep Dive into LLMs like ChatGPT

Deep Dive into LLMs like ChatGPT

Tutorial: Build a Technical Screener Webapp in 100 Lines of Code

Tutorial: Build a Technical Screener Webapp in 100 Lines of Code

Исследование алгоритмической торговли с помощью Antigravity и Gemini 3 от Google

Исследование алгоритмической торговли с помощью Antigravity и Gemini 3 от Google

Лучший Гайд по Kafka для Начинающих За 1 Час

Лучший Гайд по Kafka для Начинающих За 1 Час

Backtesting a Trading Strategy Using Bollinger Bands | Full Python Tutorial by Mohak Pachisia

Backtesting a Trading Strategy Using Bollinger Bands | Full Python Tutorial by Mohak Pachisia

From Research Paper to Python Code | Quant Trading Strategy Analysis with ChatGPT

From Research Paper to Python Code | Quant Trading Strategy Analysis with ChatGPT

GraphRAG: союз графов знаний и RAG: Эмиль Эйфрем

GraphRAG: союз графов знаний и RAG: Эмиль Эйфрем

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]