Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Using Sensor Fusion and Machine Learning to Create an AI Nose | Digi-Key Electronics

Автор: DigiKey

Загружено: 2022-08-15

Просмотров: 36594

Описание:

Machine learning can be used to combine different sensor data together to make decisions and classifications. This is a form of sensor fusion. Instead of mixing the readings together to get something like an absolute heading (from an inertial measurement unit), we can instead feed the raw data to a neural network. The network will learn the best ways to mix the data to help make predictions and classifications.

This tutorial will demonstrate the process of collecting gas data to train a machine learning model that can identify different odors. We then deploy the model to a Seeed Studio Wio Terminal so that odor classification can be performed in real time.

A written guide for building this AI artificial nose can be found here: https://www.digikey.com/en/maker/proj...

The first part of the project involves capturing raw data from a variety of gas sensors, including temperature, humidity, pressure, equivalent CO2, NO2, ethanol, CO, and two different VOC measurements. From there, we analyze the data using Python in Google Colab. That allows us to normalize all of the data so that it fits between the range 0 and 1. Note that you will need to record the minimums and ranges for each of the sensor channels, as you will need to perform normalization on raw data during inference.

Using this information, we can also drop sensor channels that do not appear to help us differentiate among odors. For example, the pressure channel offers little variation among the measurements, so we get rid of it.

Next, we import our preprocessed data into an Edge Impulse project, which guides us through the process of building a neural network that can identify odors. We use Edge Impulse to test our neural network accuracy and generate an Arduino library for us to perform real-time inference.

Finally, we deploy our model to the Wio Terminal, which provides us with inference results on the LCD.

Product Links:
Wio Terminal -
https://www.digikey.com/en/products/d...

Grove - Multichannel Gas Sensor v2 -
https://www.digikey.com/en/products/d...

Grove - SPG30 VOC and eCO2 Gas Sensor -
https://www.digikey.com/en/products/d...

Grove - BME680 Temperature, Humidity, and Pressure Sensor -
https://www.digikey.com/es/products/d...

Grove - I2C Hub -
https://www.digikey.com/en/products/d...

Related Videos:
Intro to TinyML Part 1: Training a Neural Network for Arduino in TensorFlow -
   • Intro to TinyML Part 1: Training a Neural ...  

Intro to TinyML Part 2: Deploying a TensorFlow Lite Model to Arduino -
   • Intro to TinyML Part  2: Deploying a Tenso...  

Related Project Links:
Intro to TinyML Part 1: Training a Model for Arduino in TensorFlow -
https://www.digikey.com/en/maker/proj...

Intro to TinyML Part 2: Deploying a TensorFlow Lite Model to Arduino -
https://www.digikey.com/en/maker/proj...

Related Articles:
What is Edge AI? Machine Learning + IoT -
https://www.digikey.com/en/maker/proj...

Learn more:
Maker.io - https://www.digikey.com/en/maker
Digi-Key’s Blog – TheCircuit https://www.digikey.com/en/blog
Connect with Digi-Key on Facebook   / digikey.electronics  
And follow us on Twitter   / digikey  

Using Sensor Fusion and Machine Learning to Create an AI Nose | Digi-Key Electronics

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Can You Improve Your Sense of Direction (with Technology)? | Digi-Key Electronics

Can You Improve Your Sense of Direction (with Technology)? | Digi-Key Electronics

Why It Was Almost Impossible to Make the Blue LED

Why It Was Almost Impossible to Make the Blue LED

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

Как производятся микрочипы? 🖥️🛠️ Этапы производства процессоров

Как производятся микрочипы? 🖥️🛠️ Этапы производства процессоров

Почему взрываются батарейки и аккумуляторы? [Veritasium]

Почему взрываются батарейки и аккумуляторы? [Veritasium]

Generative AI on mobile and web with Google AI Edge

Generative AI on mobile and web with Google AI Edge

Как работает асинхронный двигатель?

Как работает асинхронный двигатель?

How to Calibrate a Magnetometer | Digi-Key Electronics

How to Calibrate a Magnetometer | Digi-Key Electronics

AI Toaster That Makes Perfect Toast Using Smell | Digi-Key Electronics

AI Toaster That Makes Perfect Toast Using Smell | Digi-Key Electronics

How to Do Speech Recognition with Arduino | Digi-Key Electronics

How to Do Speech Recognition with Arduino | Digi-Key Electronics

TinyML: Getting Started with STM32 X-CUBE-AI | Digi-Key Electronics

TinyML: Getting Started with STM32 X-CUBE-AI | Digi-Key Electronics

Как использовать макетную плату

Как использовать макетную плату

Градиентный спуск, как обучаются нейросети | Глава 2, Глубинное обучение

Градиентный спуск, как обучаются нейросети | Глава 2, Глубинное обучение

Но что такое нейронная сеть? | Глава 1. Глубокое обучение

Но что такое нейронная сеть? | Глава 1. Глубокое обучение

Вы можете изучить Arduino за 15 минут.

Вы можете изучить Arduino за 15 минут.

ESD Basics 2020 06

ESD Basics 2020 06

Measuring Air Quality with ESP32 & Arduino

Measuring Air Quality with ESP32 & Arduino

Acquiring Data from Sensors and Instruments Using MATLAB

Acquiring Data from Sensors and Instruments Using MATLAB

How to Tune a PID Controller for an Inverted Pendulum | DigiKey

How to Tune a PID Controller for an Inverted Pendulum | DigiKey

Extracting Firmware from Embedded Devices (SPI NOR Flash) ⚡

Extracting Firmware from Embedded Devices (SPI NOR Flash) ⚡

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]