Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

End to End LLMOps with Kubeflow - J. George, G. Prabhu, A. Nagar & A. Raimule, K. Durai

Автор: CNCF [Cloud Native Computing Foundation]

Загружено: 2024-12-30

Просмотров: 1406

Описание:

Don't miss out! Join us at our next Flagship Conference: KubeCon + CloudNativeCon Europe in London from April 1 - 4, 2025. Connect with our current graduated, incubating, and sandbox projects as the community gathers to further the education and advancement of cloud native computing. Learn more at https://kubecon.io

End to End LLMOps with Kubeflow - Johnu George, Gavrish Prabhu, Ajay Nagar & Aishwarya Raimule, Nutanix; Krishna Durai, Meta

In the newer world of generative AI models, enterprises bet on integrating large language models into their various business use cases. Due to the complex infrastructure requirements of large language models, building scalable optimized end-to-end GenAI pipelines connecting data and compute is not easy compared to traditional machine learning models. Cluster admins need better visibility into infrastructure to ensure the best utilization of cluster resources, including expensive accelerators. In contrast, data scientists need a clean Pythonic interface without exposure to any underlying stack details. In this talk, we will cover how the Kubeflow Platform helps in LLMOps journey from training an LLM on the custom dataset to fine-tuning the pipeline for the best results and, finally, deployment of the trained models at scale. We will discuss an optimized Kubernetes native ML reference stack for your LLM needs that provides maximum infra utilization.

End to End LLMOps with Kubeflow - J. George, G. Prabhu, A. Nagar & A. Raimule, K. Durai

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Building Massive-Scale Generative AI Services with Kubernetes and Open Source - John McBride

Building Massive-Scale Generative AI Services with Kubernetes and Open Source - John McBride

Demystifying Argo Workflows: An Architectural Deep Dive - Darko Janjić, Pipekit & Becky Pauley

Demystifying Argo Workflows: An Architectural Deep Dive - Darko Janjić, Pipekit & Becky Pauley

Сквозное машинное обучение с помощью Cloudera Machine Learning

Сквозное машинное обучение с помощью Cloudera Machine Learning

Best Practices for Deploying LLM Inference, RAG and Fine Tuning Pipelines... M. Kaushik, S.K. Merla

Best Practices for Deploying LLM Inference, RAG and Fine Tuning Pipelines... M. Kaushik, S.K. Merla

Building efficient MCP servers efficiently, with Quarkus

Building efficient MCP servers efficiently, with Quarkus

Optimizing Load Balancing and Autoscaling for Large Language Model (LLM) Inference on Kub... D. Gray

Optimizing Load Balancing and Autoscaling for Large Language Model (LLM) Inference on Kub... D. Gray

Build your machine learning pipeline with Kubeflow

Build your machine learning pipeline with Kubeflow

Kubeflow Ecosystem: What’s Next for Cloud Native AI/ML and LLMOps

Kubeflow Ecosystem: What’s Next for Cloud Native AI/ML and LLMOps

ЛУЧШАЯ БЕСПЛАТНАЯ НЕЙРОСЕТЬ Google, которой нет аналогов

ЛУЧШАЯ БЕСПЛАТНАЯ НЕЙРОСЕТЬ Google, которой нет аналогов

Building a Multi-Cluster Privately Hosted LLM Serving Platform on Ku... Julian Bright & Noah Yoshida

Building a Multi-Cluster Privately Hosted LLM Serving Platform on Ku... Julian Bright & Noah Yoshida

Сквозные многозадачные операции (MLOps) с MLflow и Kubeflow — Ник Чейз, CloudGeometry

Сквозные многозадачные операции (MLOps) с MLflow и Kubeflow — Ник Чейз, CloudGeometry

Introduction to Distributed ML Workloads with Ray on Kubernetes - Mofi Rahman & Abdel Sghiouar

Introduction to Distributed ML Workloads with Ray on Kubernetes - Mofi Rahman & Abdel Sghiouar

Kubeflow Training - AI Day SF 2025

Kubeflow Training - AI Day SF 2025

Exploring MLOps and LLMOps: Architectures and Best Practices

Exploring MLOps and LLMOps: Architectures and Best Practices

A Scalable Platform for Training and Inference Using Kubeflow at CERN -Philipp Gadow, Diana Gaponcic

A Scalable Platform for Training and Inference Using Kubeflow at CERN -Philipp Gadow, Diana Gaponcic

Democratizing AI Model Training on Kubernetes with Kubeflow TrainJob and... A. Velichkevich, Y. Iwai

Democratizing AI Model Training on Kubernetes with Kubeflow TrainJob and... A. Velichkevich, Y. Iwai

RAG vs. CAG: Solving Knowledge Gaps in AI Models

RAG vs. CAG: Solving Knowledge Gaps in AI Models

Detailed LLMOPs Project Lifecycle

Detailed LLMOPs Project Lifecycle

Как изменилась жизнь разработчиков с приходом ИИ

Как изменилась жизнь разработчиков с приходом ИИ

Музыка для работы за компьютером | Фоновая музыка для концентрации и продуктивности

Музыка для работы за компьютером | Фоновая музыка для концентрации и продуктивности

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]