Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

PyTorch 101 Crash Course For Beginners in 2025!

pytorch

pytorch crash course

pytorch tutorial

pytorch tutorial for beginners

pytorch tutorial freecodecamp

pytorch full course

learn pytorch for free

learn pytorch in 2025

machine learning pytorch tutorial

machine learning

pytorch for deep learning

deep learning

deep learning full course

python

python for deep learning

learn deep learning in 2025

pytorch free course

pytorch tutorial crash course

daniel bourke

neural network

computer vision

custom datasets

Автор: Zero To Mastery

Загружено: 12 дек. 2024 г.

Просмотров: 53 770 просмотров

Описание:

Want to master PyTorch? This crash course by ML Engineer Daniel Bourke is the most up-to-date PyTorch tutorial on YouTube!

If you like this, you’ll LOVE Dan's full course! Dive into advanced topics and complete the FoodVision project 👇

🔥 Full PyTorch Bootcamp Course: https://zerotomastery.io/courses/lear...
🎁 Use YTPYTORCH10 to get 10% OFF
👨‍💻 Source Code: https://github.com/mrdbourke/pytorch-...
📓 Course Materials: https://www.learnpytorch.io/
🐍 Free Python 101 Crash Course:    • Python 101 Crash Course: Learn Python...  

==========

⏰ Timestamps ⏰

Ch. 0 – Fundamentals
00:00 Intro
01:34 What is Deep Learning?
07:38 Why Machine Learning?
11:21 Rule of ML
17:11 ML vs. DL
23:27 Neural Network Anatomy
32:58 Learning Paradigms
37:38 DL Applications
44:10 PyTorch Intro
54:32 Tensors
58:57 Course Overview
1:05:13 Best Practices
1:10:32 Resources
1:16:04 PyTorch Setup
1:23:53 Intro to Tensors
1:37:28 Random Tensors
1:47:36 Zeros & Ones
1:50:55 Ranges
1:56:22 Data Types
2:05:56 Attributes
2:14:29 Operations
2:20:38 Matrix Multiplication Pt. 1
2:30:23 Matrix Multiplication Pt. 2
2:38:24 Shape Errors
2:51:31 Aggregation
2:57:51 Min/Max
3:01:17 Reshaping
3:15:08 Squeeze/Unsqueeze
3:27:13 Indexing
3:36:55 Tensors & NumPy
3:46:13 Reproducibility
3:57:10 Accessing GPUs
4:09:10 Device-Agnostic Code
4:17:03 Exercises

Ch. 1 – Workflow
4:22:03 Workflow Intro
4:24:59 Setup
4:32:23 Dataset Creation
4:42:14 Data Splitting
4:50:44 Data Visualization
4:58:39 Linear Model
5:12:59 Model Breakdown
5:19:19 Key PyTorch Classes
5:25:55 Inspect Model
5:35:56 Predictions
5:47:18 Training Intuition
5:55:43 Optimizer Setup
6:08:44 Training Loop
6:22:48 Write Training Loop
6:31:45 Training Steps Review
6:46:52 Run Training Loop
6:56:28 Testing Code
7:08:15 Testing Steps Review
7:23:07 Model Save/Load
7:37:02 Device-Agnostic Practice
7:52:09 Full Workflow: Data
7:58:27 Model
8:08:44 Training
8:21:34 Predictions
8:27:02 Save/Load
8:36:22 Exercises

Ch. 2 – Neural Network Classification
8:40:30 Intro
8:50:21 Example
8:59:38 Architecture
9:06:19 Dataset Creation
9:18:47 Splitting Data
9:30:53 Modelling Steps
9:35:22 Small Network
9:46:29 Visualize Model
9:53:37 Using nn.Sequential
10:07:04 Functions Setup
10:22:05 From Logits to Labels
10:38:21 Training Loops
10:53:58 Predictions
11:08:21 Model Improvement
11:16:34 New Model
11:25:50 Test New Model
11:38:45 Straight Line Dataset
11:47:03 Fit Straight Line
11:57:14 Predictions Evaluation
12:02:47 Adding Non-Linearity
12:12:57 Non-Linear Model
12:23:32 Training Non-Linear Model
12:38:55 Evaluate Non-Linear Model
12:44:52 Activation Functions
12:54:37 Multi-Class Dataset
13:06:11 Multi-Class Model
13:18:49 Multi-Class Loss Function
13:25:39 Logits to Labels (Multi-Class)
13:36:51 Train Multi-Class Model
13:53:18 Evaluate Multi-Class Model
14:01:27 Classification Metrics
14:10:54 Exercises

Ch. 3 – Computer Vision
14:14:02 Intro
14:26:01 Input/Output Shapes
14:36:19 What is CNN?
14:41:32 CV Libraries
14:51:02 Dataset Overview
15:05:43 Visualizing Samples
15:15:45 DataLoader Overview
15:23:13 DataLoaders Creation
15:35:46 Baseline Model
15:50:35 Loss Function & Optimizer
16:01:14 Timing Code
16:06:59 Training & Testing Loops
16:28:35 Evaluation Function
16:41:43 Device-Agnostic Code
16:45:40 Model 1: Non-Linear
16:54:53 Loss Function
16:58:07 Refactor Training Loop
17:06:46 Refactor Testing Loop
17:13:32 Train Model 1
17:25:35 Model 1 Results
17:29:54 Model 2: CNN Overview
17:38:28 Build CNN
17:58:26 Conv2D Explanation
18:13:36 Layer Shapes
18:27:32 CNN Loss Function
18:30:21 Train CNN
18:38:25 Compare Results
18:45:59 Best Model Predictions
18:57:48 Plot Predictions
19:06:09 Confusion Matrix Setup
19:21:40 Evaluate with Confusion Matrix
19:28:45 Save Best Model
19:40:22 Summary/Exercises

Ch. 4 – Custom Datasets
19:46:34 Intro
19:56:38 Device-Agnostic Code
20:02:43 Download Images
20:16:58 Explore Format
20:25:50 Visualize Images
20:37:40 Transform Images
20:42:38 Data Augmentation
21:03:23 ImageFolder Loading
21:12:51 Visualize Loaded Images
21:20:20 DataLoader Creation
21:29:33 Custom Dataset Class
21:37:43 Helper Function
21:47:01 Write Custom Dataset
22:04:57 Dataset Class Comparison
22:12:21 Visualize Custom Dataset
22:26:50 Datasets to DataLoaders
22:33:59 Advanced Augmentation
22:48:33 Baseline Model Overview
22:56:59 Build Tiny VGG
23:08:34 Forward Pass
23:16:54 Torchinfo Summary
23:23:41 Training Functions
23:36:55 Train Model 0
23:47:19 Plot Loss Curves
24:06:36 Overfitting vs. Underfitting
24:20:59 Augmented Datasets
24:32:13 Train Model 1
24:39:34 Compare Loss Curves
24:54:12 Custom Data Predictions
25:38:56 Summary/Exercises

Ch. 5 – Going Modular
25:48:17 Intro
26:00:02 Notebook Pt. 1
26:07:52 Dataset Download
26:12:52 Python Script Outline
26:26:53 PyTorch DataLoaders Script
26:37:40 Model Building Script
26:53:35 Save Model Script
26:59:52 Training Script
27:15:49 Summary/Exercises
27:21:58 Final Takeaway

Full PyTorch Bootcamp 👉 https://zerotomastery.io/courses/lear...

PyTorch 101 Crash Course For Beginners in 2025!

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Intro to Machine Learning & Data Science in 2025 (+Pandas, NumPy, Matplotlib)

Intro to Machine Learning & Data Science in 2025 (+Pandas, NumPy, Matplotlib)

CUDA Programming Course – High-Performance Computing with GPUs

CUDA Programming Course – High-Performance Computing with GPUs

Learn TensorFlow and Deep Learning fundamentals with Python (code-first introduction) Part 1/2

Learn TensorFlow and Deep Learning fundamentals with Python (code-first introduction) Part 1/2

Full HTML & CSS Course For Beginners (6+ HOURS!) | Build Your First Website Today!

Full HTML & CSS Course For Beginners (6+ HOURS!) | Build Your First Website Today!

AI Fundamentals Explained! Machine Learning Full Course | Stanford Online (CS229)- Andrew Ng (Pt 1)

AI Fundamentals Explained! Machine Learning Full Course | Stanford Online (CS229)- Andrew Ng (Pt 1)

Mathematics for Machine Learning Tutorial (3 Complete Courses in 1 video)

Mathematics for Machine Learning Tutorial (3 Complete Courses in 1 video)

Harvard CS50’s Artificial Intelligence with Python – Full University Course

Harvard CS50’s Artificial Intelligence with Python – Full University Course

Mood Feelings🎼🎼Billie Eilish🎧Carla Morrison🎧Cigarettes After S.ex🎧Emma Peters🎧Edmofo🎧OMER BALIK🎧Zubi

Mood Feelings🎼🎼Billie Eilish🎧Carla Morrison🎧Cigarettes After S.ex🎧Emma Peters🎧Edmofo🎧OMER BALIK🎧Zubi

القارئ هزاع البلوشي - القرآن كامل جودة عالية

القارئ هزاع البلوشي - القرآن كامل جودة عالية

Python for Data Analytics - Full Course for Beginners

Python for Data Analytics - Full Course for Beginners

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]