Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Efficiently Pooling Objects in a Parallel Process Pool with Python

Автор: vlogize

Загружено: 2025-04-03

Просмотров: 3

Описание:

Discover how to optimize parallel processing using `multiprocessing` in Python, sharing mutable objects among processes without excessive cloning.
---
This video is based on the question https://stackoverflow.com/q/69468304/ asked by the user 'Emil Jansson' ( https://stackoverflow.com/u/12240875/ ) and on the answer https://stackoverflow.com/a/69479122/ provided by the user '2e0byo' ( https://stackoverflow.com/u/15452601/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: How do I pool objects in a parallel process pool?

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Efficiently Pooling Objects in a Parallel Process Pool with Python

When working with Python, especially within the realm of data processing or machine learning, the need for efficient parallel processing can become pivotal. A common challenge arises when you need to share mutable objects across multiple processes without creating numerous copies, which can be both resource and time-consuming. In this guide, we will explore a solution to efficiently manage mutable objects in a parallel process pool.

The Problem

Imagine you have a function that uses a mutable object to perform calculations, as shown in the example below:

[[See Video to Reveal this Text or Code Snippet]]

You would typically use a loop to execute this function multiple times:

[[See Video to Reveal this Text or Code Snippet]]

However, to speed up the process, you want to leverage Python's multiprocessing library to perform multiple calls of fun in parallel. The challenge? You need to share a mutable object without unnecessarily cloning it for every input pair.

The Naive Approach

A straightforward but inefficient method would be to create a deep copy of the mutable object for each input:

[[See Video to Reveal this Text or Code Snippet]]

While this method works, it is wasteful in terms of CPU and memory, particularly when dealing with large objects—like Keras models in the case of neural networks.

The Efficient Solution

Here’s a more efficient approach that allows you to manage processes manually, ensuring that only one object is created per process instead of for every input pair. Let's break down the solution:

Step 1: Create a Mutable Object Class

First, we define our mutable object:

[[See Video to Reveal this Text or Code Snippet]]

Step 2: Extend the Process Class

Next, we subclass the Process class. This custom class manages its own mutable object:

[[See Video to Reveal this Text or Code Snippet]]

Step 3: Implement the Worker Logic

Inside the run method of our Worker class, we process tasks from the task queue:

[[See Video to Reveal this Text or Code Snippet]]

Step 4: Set Up Queues and Spawn Workers

We need to set up our queues for tasks and results, and then spawn multiple worker processes:

[[See Video to Reveal this Text or Code Snippet]]

Step 5: Retrieve Results

After assigning tasks, we wait for them to complete and retrieve the results:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

This approach efficiently pools mutable objects in a parallel processing environment, reducing the overhead caused by excessive copying. Though the results may not maintain the original input order, indexing tasks allows for easy sorting later if needed.

If your processing needs to run indefinitely, consider implementing callbacks to handle results dynamically. A potential structure for this involves encapsulating your logic in another class, such as a TaskRunner, to manage state elegantly.

Implementing this efficient multiprocessing with shared mutable objects can vastly improve your application's performance, particularly when dealing with large datasets or complex models.

Feel free to explore this method in your parallel processing tasks, and optimize your Python applications!

Efficiently Pooling Objects in a Parallel Process Pool with Python

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

array(10) { [0]=> object(stdClass)#4384 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "AZnGRKFUU0c" ["related_video_title"]=> string(38) "threading vs multiprocessing in python" ["posted_time"]=> string(21) "3 года назад" ["channelName"]=> string(12) "Dave's Space" } [1]=> object(stdClass)#4357 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "0XR_91AfgZI" ["related_video_title"]=> string(76) "OOP in Python - Classes, Objects, class methods, monkey patching & more!" ["posted_time"]=> string(19) "1 год назад" ["channelName"]=> string(9) "Socratica" } [2]=> object(stdClass)#4382 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "lX9UQp2NwTk" ["related_video_title"]=> string(47) "The Ultimate Guide to Writing Classes in Python" ["posted_time"]=> string(21) "2 года назад" ["channelName"]=> string(10) "ArjanCodes" } [3]=> object(stdClass)#4389 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "2Koubj0fF9U" ["related_video_title"]=> string(49) "Thread Pools in Python - Asynchronous Programming" ["posted_time"]=> string(21) "2 года назад" ["channelName"]=> string(10) "NeuralNine" } [4]=> object(stdClass)#4368 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "WdJqo4N71f8" ["related_video_title"]=> string(71) "13. Easy Start with LangChain & LangGraph | Let Your AI Take Action" ["posted_time"]=> string(22) "13 дней назад" ["channelName"]=> string(10) "Ali Haidar" } [5]=> object(stdClass)#4386 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "rLyYb7BFgQI" ["related_video_title"]=> string(36) "Learn Python OOP in under 20 Minutes" ["posted_time"]=> string(27) "9 месяцев назад" ["channelName"]=> string(8) "Indently" } [6]=> object(stdClass)#4381 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "X7vBbelRXn0" ["related_video_title"]=> string(52) "Unlocking your CPU cores in Python (multiprocessing)" ["posted_time"]=> string(21) "2 года назад" ["channelName"]=> string(7) "mCoding" } [7]=> object(stdClass)#4391 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "GT10PnUFLlE" ["related_video_title"]=> string(25) "Multiprocessing in Python" ["posted_time"]=> string(21) "4 года назад" ["channelName"]=> string(10) "NeuralNine" } [8]=> object(stdClass)#4367 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "p0Ri2tNb-6I" ["related_video_title"]=> string(186) "Человечество навсегда ЗАПЕРТО в Солнечной системе? Астрофизик Борис Штерн раскрыл неприятную правду" ["posted_time"]=> string(19) "2 дня назад" ["channelName"]=> string(23) "Глеб Соломин" } [9]=> object(stdClass)#4385 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "r65zmt5DblM" ["related_video_title"]=> string(51) "Евстафьев 30.06.2025 - Всё готово" ["posted_time"]=> string(24) "12 часов назад" ["channelName"]=> string(12) "Ранний" } }
threading vs multiprocessing in python

threading vs multiprocessing in python

OOP in Python - Classes, Objects, class methods, monkey patching & more!

OOP in Python - Classes, Objects, class methods, monkey patching & more!

The Ultimate Guide to Writing Classes in Python

The Ultimate Guide to Writing Classes in Python

Thread Pools in Python - Asynchronous Programming

Thread Pools in Python - Asynchronous Programming

13. Easy Start with LangChain & LangGraph | Let Your AI Take Action

13. Easy Start with LangChain & LangGraph | Let Your AI Take Action

Learn Python OOP in under 20 Minutes

Learn Python OOP in under 20 Minutes

Unlocking your CPU cores in Python (multiprocessing)

Unlocking your CPU cores in Python (multiprocessing)

Multiprocessing in Python

Multiprocessing in Python

Человечество навсегда ЗАПЕРТО в Солнечной системе? Астрофизик Борис Штерн раскрыл неприятную правду

Человечество навсегда ЗАПЕРТО в Солнечной системе? Астрофизик Борис Штерн раскрыл неприятную правду

Евстафьев 30.06.2025 - Всё готово

Евстафьев 30.06.2025 - Всё готово

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]