Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Writing the equation of a parabola given focus and directrix

Автор: Brian McLogan

Загружено: 2016-02-23

Просмотров: 266766

Описание:

Learn how to write the equation of a parabola given the focus and the directrix. A parabola is the shape of the graph of a quadratic equation. A parabola can open up or down (if x is squared) or open left or right (if y is squared). Recall that the focus and the vertex of a parabola are on the same line of symmetry.

When given the focus and the directrix of a parabola, recall that the vertex of a parabola is halfway between the focus and the directrix and the focus is inside the parabola. This enables us to identify the direction which the required parabola opens. We also need to identify the value of p, which is the distance between the vertex and the focus. p is negative when the parabola opens down or left and is positive when the parabola opens right or up.

Once we identify the direction and the value of p, we can use the equation of parabola given by (y - k)^2 = 4p(x - h) for parabolas that opens up or down and (x - h)^2 = 4p(y - k) for parabolas that opens left or right.
#conicsections #parabolaconicsections

Writing the equation of a parabola given focus and directrix

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Fiinding the standard form of a parabola given focus and directrix

Fiinding the standard form of a parabola given focus and directrix

Finding The Focus and Directrix of a Parabola - Conic Sections

Finding The Focus and Directrix of a Parabola - Conic Sections

Equation for parabola from focus and directrix | Conic sections | Algebra II | Khan Academy

Equation for parabola from focus and directrix | Conic sections | Algebra II | Khan Academy

Написание уравнений парабол

Написание уравнений парабол

Finding the standard form of a parabola given vertex and focus

Finding the standard form of a parabola given vertex and focus

write an equation of a parabola from a given graph

write an equation of a parabola from a given graph

How to Find the Equation of a Parabola with Focus (-1, 2) and Directrix x = -5

How to Find the Equation of a Parabola with Focus (-1, 2) and Directrix x = -5

The Parabola in Conic Sections

The Parabola in Conic Sections

Parabolas Explained! (Graphing, Vertex, Focus, Directrix & Completing the Square)

Parabolas Explained! (Graphing, Vertex, Focus, Directrix & Completing the Square)

Самый короткий тест на интеллект Задача Массачусетского профессора

Самый короткий тест на интеллект Задача Массачусетского профессора

Complete the square to find the focus directrix and vertex in conic sections parabola

Complete the square to find the focus directrix and vertex in conic sections parabola

FINDING EQUATION OF PARABOLA WITH GIVEN VERTEX AND FOCUS

FINDING EQUATION OF PARABOLA WITH GIVEN VERTEX AND FOCUS

Equation of Parabola Given Focus and Directrix

Equation of Parabola Given Focus and Directrix

13 - Conic Sections: Parabola, Focus, Directrix, Vertex & Graphing - Part 1

13 - Conic Sections: Parabola, Focus, Directrix, Vertex & Graphing - Part 1

Как найти уравнение квадратной функции по графику

Как найти уравнение квадратной функции по графику

ʕ•ᴥ•ʔ Find the Equation of a Parabola from a Graph with an Easy Walkthrough

ʕ•ᴥ•ʔ Find the Equation of a Parabola from a Graph with an Easy Walkthrough

Equation of Parabola with Given Focus and Directrix

Equation of Parabola with Given Focus and Directrix

How to find the directrix, focus and vertex of a parabola

How to find the directrix, focus and vertex of a parabola

Парабола: найти вершину, фокус, директрису и график

Парабола: найти вершину, фокус, директрису и график

Equation of the Parabola with Focus (0, -3) and Directrix y = 3

Equation of the Parabola with Focus (0, -3) and Directrix y = 3

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: infodtube@gmail.com