Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Contextual Bandit: from Theory to Applications. - Vernade - Workshop 3 - CEB T1 2019

Автор: Institut Henri Poincaré

Загружено: 2019-05-10

Просмотров: 12106

Описание:

Claire Vernade (Google Deepmind) / 05.04.2019

Contextual Bandit: from Theory to Applications.

Trading exploration versus exploration is a key problem in computer science: it is about learning how to make decisions in order to optimize a long-term cost. While many areas of machine learning aim at estimating a hidden function given a dataset, reinforcement learning is rather about optimally building a dataset of observations of this hidden function that contains just enough information to guarantee that the maximum is being properly estimated. The first part of this talk reviews the main techniques and results known on the contextual linear bandit. We'll mostly rely on the recent book of Lattimore and Szepesvari (2019) [1]. Indeed, real-world problems often don't behave as the theory would like them to. In the second part of this talk, we want to share our experience in applying bandit algorithms in industry [2]. In particular, it appears that while the system is supposed to be interacting with its environment, the customers' feedback is often delayed or missing and does not allow to perform the necessary updates. We propose a solution to this issue, propose some alternative models and architecture, and finish the presentation with open questions on sequential learning beyond bandits.
[1] Lattimore, Tor, and Csaba Szepesvári. Bandit algorithms. preprint (2018).
[2] Vernade, Claire, et al. Contextual bandits under delayed feedback. arXiv preprint arXiv:1807.02089 (2018)

----------------------------------
Vous pouvez nous rejoindre sur les réseaux sociaux pour suivre nos actualités.

Facebook :   / instituthenripoincare  
Twitter :   / inhenripoincare  
Instagram :   / instituthenripoincare  

*************************************
Langue : Anglais; Date : 05.04.2019; Conférencier : Vernade, Claire; Évenement : Workshop 3 - CEB T1 2019; Lieu : IHP; Mots Clés :

Contextual Bandit: from Theory to Applications. - Vernade - Workshop 3 - CEB T1 2019

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

On the Global Convergence of Gradient Descent for (...) - Bach - Workshop 3 - CEB T1 2019

On the Global Convergence of Gradient Descent for (...) - Bach - Workshop 3 - CEB T1 2019

CS885 Lecture 8b: Bayesian and Contextual Bandits

CS885 Lecture 8b: Bayesian and Contextual Bandits

Рабочая музыка для глубокой концентрации и сверхэффективности

Рабочая музыка для глубокой концентрации и сверхэффективности

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

Positive Mood Jazz ☕ Cozy Winter Coffee Jazz Music and Sweet Bossa Nova Piano for Energy the day

Positive Mood Jazz ☕ Cozy Winter Coffee Jazz Music and Sweet Bossa Nova Piano for Energy the day

4 Hours Chopin for Studying, Concentration & Relaxation

4 Hours Chopin for Studying, Concentration & Relaxation

Выборка Томпсона, однорукие бандиты и бета-распределение

Выборка Томпсона, однорукие бандиты и бета-распределение

The Contextual Bandits Problem

The Contextual Bandits Problem

Optimization and Contextual Bandits at Stripe

Optimization and Contextual Bandits at Stripe

Председатель земного шара. Как реорганизовать Рабкринж? Белковский + Бунтман.  @BelkovskiyS

Председатель земного шара. Как реорганизовать Рабкринж? Белковский + Бунтман. @BelkovskiyS

How can Machine Learning Help Mathematicians?

How can Machine Learning Help Mathematicians?

14. Causal Inference, Part 1

14. Causal Inference, Part 1

Bandit Algorithms - 1

Bandit Algorithms - 1

Taming the Monster: A Fast and Simple Algorithm for Contextual Bandits

Taming the Monster: A Fast and Simple Algorithm for Contextual Bandits

A Multi-Armed Bandit Framework for Recommendations at Netflix | Netflix

A Multi-Armed Bandit Framework for Recommendations at Netflix | Netflix

Machine learning - Bayesian optimization and multi-armed bandits

Machine learning - Bayesian optimization and multi-armed bandits

lofi hip hop radio 📚 beats to relax/study to

lofi hip hop radio 📚 beats to relax/study to

Peterson & Qin - Contextual Multi-Arm Bandit and its applications to digital experiments | PyData

Peterson & Qin - Contextual Multi-Arm Bandit and its applications to digital experiments | PyData

Bridging Stochastic and Adversarial Bandits

Bridging Stochastic and Adversarial Bandits

CS885 Lecture 8a: Multi-armed bandits

CS885 Lecture 8a: Multi-armed bandits

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: infodtube@gmail.com