Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Low Bit-Rate Audio Coding Explained: Perceptual & Lossless Compression

Автор: Sound & Audio Reference

Загружено: 2025-11-21

Просмотров: 86

Описание:

Discover how modern audio compression works with this detailed yet accessible guide to low bit-rate coding. Learn the differences between perceptual (lossy) coding, which reduces file size by removing sounds the human ear can’t easily hear, and lossless coding, which preserves every detail of the original audio while still compressing data.

This video covers:
• How perceptual codecs use psychoacoustics to hide noise and efficiently allocate bits.
• The differences between time-domain, subband, and transform coding.
• Techniques like Spectral Band Replication (SBR) and multichannel coding for high-efficiency audio.
• How tandem codecs and metadata reduce quality loss in chained encoding.
• Methods for critical listening and statistical evaluation of codecs.
• Fundamentals of lossless compression and entropy coding for bit-perfect audio.

Some of the questions answered in this video:
How can a codec remove half the audio data—and you still can’t tell?
Why does your ear let engineers throw away so much sound?
How does psychoacoustics decide what audio you’ll never notice?
What’s the “masking threshold,” and why does it shape every MP3 you’ve ever heard?
How much noise can be added before you actually hear it?
Why doesn’t lowering the sampling rate always save data wisely?
How can bit depth change dynamically depending on what you hear?
What’s the secret formula behind “coding gain”?
How does a codec know which frequencies deserve more bits?
Why do perceptual codecs sound better than PCM at the same bit rate?
Why can short codec blocks kill pre-echo—but hurt tone detail?
Why do transform codecs trade time accuracy for frequency precision?
What happens when quantization noise appears before the sound itself?
Why do subband and transform codecs hear sound differently?
How does your ear inspire the way filter banks split frequencies?
How can stereo data be cut in half—without losing width or depth?
Why does your brain’s sense of space make multichannel coding harder?
How does “mid-side” encoding save bits yet keep stereo intact?
Why can coding errors ruin a stereo image even if the sound’s still clean?
What is “intensity stereo,” and how does it fake high-frequency direction?
How can spectral band replication (SBR) recreate missing high frequencies?
Why do chained codecs sometimes create their own noise?
What makes some codecs sound worse after multiple encodes?
How can metadata secretly preserve codec quality?
Why is “blind decoding” possible even without control data?
Why can’t standard measurements reveal what perceptual codecs really sound like?
What’s a “noise-to-mask ratio,” and how does it judge codec transparency?
How can a sine wave expose codec artifacts better than music?
Why are human ears still the gold standard in codec testing?
Which instruments are used to test a codec’s weak spots?
Why can’t any file be compressed smaller than its entropy limit?
How does predictive coding guess the next sample before it happens?
Why does lossless compression shrink sine waves better than noise?
What’s the real difference between lossy and lossless compression?
Why does every extra input bit add almost exactly one output bit?

Whether you’re an audio engineer, student, or enthusiast, this video explains the science behind high-quality, efficient audio compression and how modern codecs balance size and fidelity.

0:00 Low Bit-Rate Coding
0:49 Perceptual Coding
1:51 Rationale for Perceptual Coding
4:53 Perceptual Coding in Time & Frequency
6:53 Subband Coding
9:06 Transform Coding
12:31 Filter Banks
13:13 Quadrature Mirror Filters
14:03 Hybrid Filters
14:21 Polyphase Filters
14:54 MDCT
15:12 Multichannel Coding
17:23 Tandem Codecs
19:27 Spectral Band Replication
20:50 Perceptual Coding Performance Evaluation
23:06 Critical Listening
24:44 Listening Test Methodologies & Standards
25:38 Listening Test Statistical Evaluation
26:18 Lossless Data Compression
27:16 Entropy Coding
27:46 Audio Data Compression

Low Bit-Rate Audio Coding Explained: Perceptual & Lossless Compression

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Частота дискретизации и битовая глубина | Аудиотерминология для начинающих

Частота дискретизации и битовая глубина | Аудиотерминология для начинающих

Codec Design Explained: From Early Codecs to MP3, AAC, Dolby Digital, DTS, and Lossless Formats

Codec Design Explained: From Early Codecs to MP3, AAC, Dolby Digital, DTS, and Lossless Formats

Spotify Lossless has a problem

Spotify Lossless has a problem

these compression algorithms could halve our image file sizes (but we don't use them) #SoMEpi

these compression algorithms could halve our image file sizes (but we don't use them) #SoMEpi

Explaining Audio File Formats

Explaining Audio File Formats

Why Higher Bit Depth and Sample Rates Matter in Music Production

Why Higher Bit Depth and Sample Rates Matter in Music Production

Sigma Delta Conversion & Noise Shaping Explained: Audio A/D & D/A Demystified

Sigma Delta Conversion & Noise Shaping Explained: Audio A/D & D/A Demystified

Что вам НУЖНО знать о Spotify Lossless

Что вам НУЖНО знать о Spotify Lossless

Чем ОПАСЕН МАХ? Разбор приложения специалистом по кибер безопасности

Чем ОПАСЕН МАХ? Разбор приложения специалистом по кибер безопасности

Акустический ликбез. Виртуальный объем

Акустический ликбез. Виртуальный объем

Bit Depth Vs  Sample Rate

Bit Depth Vs Sample Rate

Psychoacoustics Explained: How Your Brain Hears, Feels, and Shapes Sound

Psychoacoustics Explained: How Your Brain Hears, Feels, and Shapes Sound

The Unreasonable Effectiveness of JPEG: A Signal Processing Approach

The Unreasonable Effectiveness of JPEG: A Signal Processing Approach

Как устроена компьютерная графика? OpenGL / C++

Как устроена компьютерная графика? OpenGL / C++

Слепой тест: аудио без потерь и обычный MP3! 🤔 Заметите разницу?

Слепой тест: аудио без потерь и обычный MP3! 🤔 Заметите разницу?

What is Sample Rate and Bit Depth for Live Sound?

What is Sample Rate and Bit Depth for Live Sound?

Самая сложная модель из тех, что мы реально понимаем

Самая сложная модель из тех, что мы реально понимаем

Объяснение битовой глубины звука и частоты дискретизации

Объяснение битовой глубины звука и частоты дискретизации

Stanford EE274: Data Compression I 2023 I Lecture 1 - Course Intro, Lossless Data Compression Basics

Stanford EE274: Data Compression I 2023 I Lecture 1 - Course Intro, Lossless Data Compression Basics

Для Чего РЕАЛЬНО Нужен был ГОРБ Boeing 747?

Для Чего РЕАЛЬНО Нужен был ГОРБ Boeing 747?

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: infodtube@gmail.com