[Paper Review] Self-Supervised Contrastive PreTraining for TimeSeries via Time-Frequency Consistency
Автор: 서울대학교 산업공학과 DSBA 연구실
Загружено: 2022-11-16
Просмотров: 2274
발표자: 석사과정 강형원
1. 논문 제목:
Self-Supervised Contrastive Pre-Training for Time Series via Time-Frequency Consistency (Xiang Zhang, Ziyuan Zhao, Theodoros Tsiligkaridis, Marinka Zitnik, NeurIPS 2022)
링크: https://arxiv.org/abs/2206.08496
2. 논문 Overview
Time domain과 frequency domain에서 각각 augmentation을 통해 positive pair를 생성하고, contrastive learning을 수행
Frequency domain에서의 augmentation 방법으로 fourier component random remove, 또는 진폭의 변화를 주는 방법 사용
Time domain에서의 representation과 frequency domain에서의 representation이 consistency를 갖도록 학습
4. 참고 영상
[Paper Review] Unsupervised Representation Learning Approaches for Multivariate Time Series (최희정 박사과정)
링크: • [Paper Review] Unsupervised Representation...
[Paper Review] Unsupervised Representation Learning Approaches for Multivariate Time Series (2) (최희정 박사과정)
링크: • [Paper Review] Unsupervised Representation...
[Paper Review] CoST: Contrastive learning of Disentangled Seasonal-Trend Representations for Time Series Forecasting (김지나 석사졸업생)
링크: • CoST:Contrastive Learning of Disentangled ...
[Paper Review] TS2Vec: Towards Universal Representation of Time Series (김수빈 석사과정)
링크: • [Paper Review] TS2Vec: Towards Universal R...
[Paper Review] Unsupervised Time-Series Representation Learning with Iterative Bilinear Temporal-Spectral Fusion (최희정 박사과정)
링크: • [Paper Review] Time-Series Representation ...
[Paper Review] Autoformer: Decomposition transformers with auto-correlation for long-term series forecasting (강형원 석사과정)
링크: • [Paper Review] Autoformer
[Paper Review] FEDformer: Frequency Enhanced Decomposed Transformer for Long-term Series Forecasting (강형원 석사과정)
링크: • [Paper Review] FEDformer: Frequency Enhanc...
3. keyword: Time series, Representation learning, Contrastive learning, Time embedding, Frequency embedding, embedding space, Consistency, Contrastive, Time-Frequency Consistency, TF-C, Classification, Forecasting, Anomaly Detection, Clustering, Transfer learning
Доступные форматы для скачивания:
Скачать видео mp4
-
Информация по загрузке: