Is there a better alternative for Ti-6Al-4V in titanium 3D printing? [VIDEO ABSTRACT]
Автор: Dr Alec E Davis
Загружено: 5 дек. 2022 г.
Просмотров: 1 588 просмотров
Ti-6Al-4V (Ti64) is the 'go-to' alloy for many applications, particularly in aerospace industries. But this alloy is designed for cast and wrought processes like forging and not for 3D printing (additive manufacturing). So, should we just assume Ti64 is still our best option for most applications?
-Probably not.
In this video I compare two titanium alloys deposited using high-deposition-rate 3D printing (additive manufacturing) - Ti-6Al-4V (Ti64) & Ti-6Al-2Sn-4Zr-2Mo-0.1Si (Ti6242) - to answer this question.
Original research paper: https://doi.org/10.1007/s11661-022-06...
Research credits: A. E. Davis, A. E. Caballero, R. Biswal, S. W. Williams, P. B. Prangnell. All research conducted at the University of Manchester, and Cranfield University, UK.
Video credits: Produced, written, recorded, and performed by Alec E. Davis. Except for WAAM process video: recorded by A. E. Caballero.
Video doi: https://doi.org/10.5281/zenodo.7400019
This work was supported by grants: NEWAM (EPSRC EP/R027218/1), Lightform (EPSRC EP/R001715/1), and Henry Royce Institute for Advanced Materials (EPSRC EP/R00661X/1, EP/S019367/1, EP/P025021/1, and EP/P025498/1). Alec E. Davis is also appreciated for equipment loan from the @materialsavclub.
Alec E. Davis links:
[email protected]
/ alec_e_davis
/ alecdavis1986
https://www.royce.ac.uk/
https://www.materials.manchester.ac.uk/
The NEWAM Project: https://newam.uk/
References:
[1] A. E. Davis, A. E. Caballero, R. Biswal, S. W. Williams, and P. B. Prangnell, “Comparison of Microstructure Refinement in Wire-Arc Additively Manufactured Ti-6Al-2Sn-4Zr-2Mo-0.1Si and Ti-6Al-4V Built with Inter-Pass Deformation,” Metall. Mater. Trans. A, 2022, doi: 10.1007/s11661-022-06811-1.
[2] A. Ho, H. Zhao, J. W. Fellowes, F. Martina, A. E. Davis, and P. B. Prangnell, “On the origin of microstructural banding in Ti-6Al4V wire-arc based high deposition rate additive manufacturing,” Acta Mater., vol. 166, pp. 306–323, 2019, doi: 10.1016/j.actamat.2018.12.038.
[3] J. Donoghue, A. A. Antonysamy, F. Martina, P. A. Colegrove, S. W. Williams, and P. B. Prangnell, “The effectiveness of combining rolling deformation with Wire-Arc Additive Manufacture on β-grain refinement and texture modification in Ti-6Al-4V,” Mater. Charact., vol. 114, pp. 103–114, 2016, doi: 10.1016/j.matchar.2016.02.001.
[4] J. Donoghue et al., “On the Observation of Annealing Twins during Simulating β-Grain Refinement in Ti-6Al-4V High Deposition Rate AM with In-Process Deformation,” Acta Mater., vol. 186, pp. 229–241, 2019, doi: 10.1016/j.actamat.2020.01.009.
[5] A. E. Davis, J. R. Kennedy, J. Ding, and P. B. Prangnell, “The effect of processing parameters on rapid-heating β recrystallization in inter-pass deformed Ti-6Al-4V wire-arc additive manufacturing,” Mater. Charact., vol. 163, no. February, p. 110298, 2020, doi: 10.1016/j.matchar.2020.110298.
[6] A. E. Davis, A. E. Caballero, and P. B. Prangnell, “Confirmation of rapid-heating β recrystallization in wire-arc additively manufactured Ti-6Al-4V,” Materialia, vol. 13, no. June, pp. 0–5, 2020, doi: 10.1016/j.mtla.2020.100857.
[7] J. R. Hönnige et al., “The Effectiveness of Grain Refinement by Machine Hammer Peening in High Deposition Rate Wire-Arc AM Ti-6Al-4V,” Metall. Mater. Trans. A, vol. 51, pp. 3692–3703, 2020.
[8] A. E. Davis, J. R. Hönnige, F. Martina, and P. B. Prangnell, “Quantification of strain fields and grain refinement in Ti-6Al-4V inter-pass rolled wire-arc AM by EBSD misorientation analysis,” Mater. Charact., vol. 170, no. May, pp. 151–155, 2020, doi: 10.1016/j.matchar.2020.110673.
[9] L. Neto, S. W. Williams, J. Ding, J. R. Hönnige, and F. Martina, “Mechanical Properties Enhancement of Additive Manufactured Ti-6Al-4V by Machine Hammer Peening,” Adv. Surf. Enhanc. 1st Int. Conf. Adv. Surf. Enhanc., vol. 1, pp. 121–132, 2020, doi: 10.1007/978-981-15-0054-1.
[10] H. Zhao, A. Ho, A. E. Davis, A. A. Antonysamy, and P. B. Prangnell, “Automated image mapping and quantification of microstructure heterogeneity in additive manufactured Ti6Al4V,” Mater. Charact., vol. 147, no. July 2018, pp. 131–145, 2019, doi: 10.1016/j.matchar.2018.10.027.
[11] J. W. Lu, Y. Q. Zhao, P. Ge, and H. Z. Niu, “Microstructure and beta grain growth behavior of Ti-Mo alloys solution treated,” Mater. Charact., vol. 84, no. 96, pp. 105–111, 2013, doi: 10.1016/j.matchar.2013.07.014.
[12] R. K. Nalla, B. L. Boyce, J. P. Campbell, J. O. Peters, and R. O. Ritchie, “Influence of microstructure on high-cycle fatigue of Ti-6Al-4V: bimodal vs. lamellar structures,” Metall. Mater. Trans. A, vol. 33A, pp. 899–918, 2002, doi: 10.13140/RG.2.1.3668.1201.
![Is there a better alternative for Ti-6Al-4V in titanium 3D printing? [VIDEO ABSTRACT]](https://ricktube.ru/thumbnail/NkcLMC_awNE/hq720.jpg)
Доступные форматы для скачивания:
Скачать видео mp4
-
Информация по загрузке: