Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

[Paper Summary] Objective Mismatch in Model-based Reinforcement Learning

Автор: Nathan Lambert

Загружено: 4 февр. 2021 г.

Просмотров: 236 просмотров

Описание:

Two optimization problems leave model-based RL in a tricky point: you cannot optimize both the model and the controller simultaneously. This video points a direction for a new class of model-based RL algorithms.

[Paper Summary] Objective Mismatch in Model-based Reinforcement Learning

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Traits of next generation reasoning models

Traits of next generation reasoning models

15min History of Reinforcement Learning and Human Feedback

15min History of Reinforcement Learning and Human Feedback

Early stages of the reinforcement learning era of language models

Early stages of the reinforcement learning era of language models

The Most Important Algorithm in Machine Learning

The Most Important Algorithm in Machine Learning

[Talk] Dissertation Talk: Synergy of Prediction and Control in Model-based Reinforcement Learning

[Talk] Dissertation Talk: Synergy of Prediction and Control in Model-based Reinforcement Learning

The Incredible Properties of Composite Materials

The Incredible Properties of Composite Materials

Blender Tutorial for Complete Beginners - Part 1

Blender Tutorial for Complete Beginners - Part 1

GRPO's new variants and implementation secrets

GRPO's new variants and implementation secrets

An update on DPO vs PPO for LLM alignment

An update on DPO vs PPO for LLM alignment

Hough Transform | Boundary Detection

Hough Transform | Boundary Detection

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]