Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift

Автор: Yannic Kilcher

Загружено: 2019-02-02

Просмотров: 27751

Описание:

https://arxiv.org/abs/1502.03167

Abstract:
Training Deep Neural Networks is complicated by the fact that the distribution of each layer's inputs changes during training, as the parameters of the previous layers change. This slows down the training by requiring lower learning rates and careful parameter initialization, and makes it notoriously hard to train models with saturating nonlinearities. We refer to this phenomenon as internal covariate shift, and address the problem by normalizing layer inputs. Our method draws its strength from making normalization a part of the model architecture and performing the normalization for each training mini-batch. Batch Normalization allows us to use much higher learning rates and be less careful about initialization. It also acts as a regularizer, in some cases eliminating the need for Dropout. Applied to a state-of-the-art image classification model, Batch Normalization achieves the same accuracy with 14 times fewer training steps, and beats the original model by a significant margin. Using an ensemble of batch-normalized networks, we improve upon the best published result on ImageNet classification: reaching 4.9% top-5 validation error (and 4.8% test error), exceeding the accuracy of human raters.

Authors:
Sergey Ioffe, Christian Szegedy

Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Глубокое обучение. Лекция 8. Batch Normalization

Глубокое обучение. Лекция 8. Batch Normalization

Гипотеза лотерейного билета: поиск разреженных, обучаемых нейронных сетей.

Гипотеза лотерейного билета: поиск разреженных, обучаемых нейронных сетей.

Нормализация партии

Нормализация партии

Управление поведением LLM без тонкой настройки

Управление поведением LLM без тонкой настройки

[Classic] Generative Adversarial Networks (Paper Explained)

[Classic] Generative Adversarial Networks (Paper Explained)

Supervised Contrastive Learning

Supervised Contrastive Learning

Group Normalization (Paper Explained)

Group Normalization (Paper Explained)

[Classic] Deep Residual Learning for Image Recognition (Paper Explained)

[Classic] Deep Residual Learning for Image Recognition (Paper Explained)

How does Batch Normalization Help Optimization?

How does Batch Normalization Help Optimization?

[Classic] ImageNet Classification with Deep Convolutional Neural Networks (Paper Explained)

[Classic] ImageNet Classification with Deep Convolutional Neural Networks (Paper Explained)

Batch Normalization - Part 1: Why BN, Internal Covariate Shift, BN Intro

Batch Normalization - Part 1: Why BN, Internal Covariate Shift, BN Intro

Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations

Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations

Почему «Трансформеры» заменяют CNN?

Почему «Трансформеры» заменяют CNN?

Deep Networks Are Kernel Machines (Paper Explained)

Deep Networks Are Kernel Machines (Paper Explained)

Batch normalization | What it is and how to implement it

Batch normalization | What it is and how to implement it

Neural Networks Summary: All hyperparameters

Neural Networks Summary: All hyperparameters

Прогнозирование временных рядов с помощью XGBoost — используйте Python и машинное обучение для пр...

Прогнозирование временных рядов с помощью XGBoost — используйте Python и машинное обучение для пр...

Reformer: The Efficient Transformer

Reformer: The Efficient Transformer

LSTM is dead. Long Live Transformers!

LSTM is dead. Long Live Transformers!

2015 Batch Normalization paper summary

2015 Batch Normalization paper summary

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]