Bagging/Bootstrap Aggregating in Machine Learning with examples
Автор: Gate Smashers
Загружено: 14 дек. 2023 г.
Просмотров: 79 037 просмотров
Bagging (Bootstrap Aggregating) is a powerful ensemble technique in machine learning designed to improve model accuracy and reduce variance. In this video, we’ll explore how Bagging works and its significant impact on enhancing model performance.
00:00 – Introduction
00:16 – Bagging/Bootstrap
02:28 – Ensemble learning
👉Subscribe to our new channel: / @varunainashots
Other subject playlist Link:
--------------------------------------------------------------------------------------------------------------------------------------
►Theory of Computation
• TOC(Theory of Computation)
►Operating System:
• Operating System (Complete Playlist)
►Database Management System:
• DBMS (Database Management system) Com...
►Computer Networks:
• Computer Networks (Complete Playlist)
►Artificial Intelligence:
• Artificial Intelligence (Complete Pla...
►Computer Architecture:
• Computer Organization and Architectur...
►Design and Analysis of algorithms (DAA):
• Design and Analysis of algorithms (DAA)
►Structured Query Language (SQL):
• Structured Query Language (SQL)
---------------------------------------------------------------------------------------------------------------------------------------
Our Social Media:
► Subscribe us on YouTube- / gatesmashers
► Like Our page on Facebook - / gatesmashers
► Follow us on Instagram- / gate.smashers
--------------------------------------------------------------------------------------------------------------------------------------
►A small donation would help us continue making GREAT Lectures for you.
►Be a Member & Give your Support on bellow link : / @gatesmashers
►UPI: gatesmashers@apl
►Paypal Account: paypal.me/GSmashers
►For any other Contribution like notes pdfs, feedback, suggestion etc
[email protected]
►For Bussiness Query
[email protected]

Доступные форматы для скачивания:
Скачать видео mp4
-
Информация по загрузке: