Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Attention for Neural Networks, Clearly Explained!!!

Josh Starmer

StatQuest

Machine Learning

Statistics

Data Science

Автор: StatQuest with Josh Starmer

Загружено: 5 июн. 2023 г.

Просмотров: 345 823 просмотра

Описание:

Attention is one of the most important concepts behind Transformers and Large Language Models, like ChatGPT. However, it's not that complicated. In this StatQuest, we add Attention to a basic Sequence-to-Sequence (Seq2Seq or Encoder-Decoder) model and walk through how it works and is calculated, one step at a time. BAM!!!

NOTE: This StatQuest is based on two manuscripts. 1) The manuscript that originally introduced Attention to Encoder-Decoder Models: Neural Machine Translation by Jointly Learning to Align and Translate: https://arxiv.org/abs/1409.0473 and 2) The manuscript that first used the Dot-Product similarity for Attention in a similar context: Effective Approaches to Attention-based Neural Machine Translation https://arxiv.org/abs/1508.04025

NOTE: This StatQuest assumes that you are already familiar with basic Encoder-Decoder neural networks. If not, check out the 'Quest:    • Sequence-to-Sequence (seq2seq) Encoder-Dec...  

For a complete index of all the StatQuest videos, check out:
https://statquest.org/video-index/

If you'd like to support StatQuest, please consider...

Patreon:   / statquest  
...or...
YouTube Membership:    / @statquest  

...buying one of my books, a study guide, a t-shirt or hoodie, or a song from the StatQuest store...
https://statquest.org/statquest-store/

...or just donating to StatQuest!
https://www.paypal.me/statquest

Lastly, if you want to keep up with me as I research and create new StatQuests, follow me on twitter:
  / joshuastarmer  

0:00 Awesome song and introduction
3:14 The Main Idea of Attention
5:34 A worked out example of Attention
10:18 The Dot Product Similarity
11:52 Using similarity scores to calculate Attention values
13:27 Using Attention values to predict an output word
14:22 Summary of Attention

#StatQuest #neuralnetwork #attention

Attention for Neural Networks, Clearly Explained!!!

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Transformer Neural Networks, ChatGPT's foundation, Clearly Explained!!!

Transformer Neural Networks, ChatGPT's foundation, Clearly Explained!!!

Sequence-to-Sequence (seq2seq) Encoder-Decoder Neural Networks, Clearly Explained!!!

Sequence-to-Sequence (seq2seq) Encoder-Decoder Neural Networks, Clearly Explained!!!

The math behind Attention: Keys, Queries, and Values matrices

The math behind Attention: Keys, Queries, and Values matrices

How did the Attention Mechanism start an AI frenzy? | LM3

How did the Attention Mechanism start an AI frenzy? | LM3

Recurrent Neural Networks (RNNs), Clearly Explained!!!

Recurrent Neural Networks (RNNs), Clearly Explained!!!

RAG vs Fine-Tuning vs Prompt Engineering: Optimizing AI Models

RAG vs Fine-Tuning vs Prompt Engineering: Optimizing AI Models

Long Short-Term Memory (LSTM), Clearly Explained

Long Short-Term Memory (LSTM), Clearly Explained

Визуализация внимания, сердце трансформера | Глава 6, Глубокое обучение

Визуализация внимания, сердце трансформера | Глава 6, Глубокое обучение

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

RAG vs. CAG: Solving Knowledge Gaps in AI Models

RAG vs. CAG: Solving Knowledge Gaps in AI Models

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]