Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

How to Fix Encoding Issues with Target Column in Multiclass Classification Using Pandas

Автор: vlogize

Загружено: 2025-05-27

Просмотров: 3

Описание:

Learn how to solve encoding issues in your target column for multiclass classification problems using Pandas with clear, step-by-step guidance.
---
This video is based on the question https://stackoverflow.com/q/66624129/ asked by the user 'AMIT BISHT' ( https://stackoverflow.com/u/6816356/ ) and on the answer https://stackoverflow.com/a/66625039/ provided by the user 'Anurag Dabas' ( https://stackoverflow.com/u/14289892/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Encoded target column shows only one category?

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
How to Fix Encoding Issues with Target Column in Multiclass Classification Using Pandas

When working on a multiclass classification problem, it's common to encounter issues with encoding the target column. A user recently faced a perplexing situation where encoding efforts yielded only one category. In this post, we will explore the problem at hand and outline a structured solution that ensures your target column is encoded correctly.

Understanding the Problem

In the user’s case, the target column consisted of four distinct classes: Low, Medium, High, and Very High. However, after attempting to encode these classes into numerical values, the resulting value counts indicated only one category—0.

Here's a brief summary of the original data structure:

High: 18,767 instances

Very High: 15,856 instances

Medium: 9,212 instances

Low: 5,067 instances

Despite having a diverse dataset, the encoding attempts resulted in:

0: 48,902 instances.

The user was clear that they aimed to achieve an encoding of 0, 1, 2, 3 for these classes but faced difficulties across various encoding methods: replace(), factorize(), and Label Encoder.

Analyzing the Encoding Methods

1. Replace Method

The user initially tried to replace string labels with numeric values using a dictionary mapping. However, this method led to incorrect results.

2. Factorize Method

The use of factorize() is often a good approach but can yield similar issues if the data hasn't been correctly prepped.

3. Label Encoder

Employing LabelEncoder from sklearn typically works well for label encoding, but here it also failed to represent the different classes appropriately.

Finding a Solution

The encoding issues primarily stem from incorrect handling of the data types or the conversion method used. Let's break down the solution step-by-step.

Step 1: Define a Mapping

First, you need to create a mapping dictionary to correlate the class names with their respective numeric values.

[[See Video to Reveal this Text or Code Snippet]]

Step 2: Ensure Correct Data Type

Next, ensure that your target column is treated as an object type. This can prevent unintended interactions during encoding.

[[See Video to Reveal this Text or Code Snippet]]

Step 3: Create a Custom Encoding Function

Define a function that uses the mapping dictionary to convert class names into numeric values.

[[See Video to Reveal this Text or Code Snippet]]

Step 4: Apply the Function

Now, apply this function to your target column using apply(). This method is effective for transforming each entry based on your custom logic.

[[See Video to Reveal this Text or Code Snippet]]

Step 5: Verify the Output

Finally, it’s essential to check the output of your transformations by examining the value counts.

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

By following these steps, you should be able to encode your target column properly, resulting in a numeric representation of 0, 1, 2, 3 as intended. Encoding is a crucial part of preparing your dataset for multiclass classification, and understanding the intricacies of methods like replace(), factorize(), and custom functions will smooth your data preprocessing journey.

Now, when tuning your model or running analyses, you’ll be confident in the integrity of your target column.

Happy coding!

How to Fix Encoding Issues with Target Column in Multiclass Classification Using Pandas

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

array(10) { [0]=> object(stdClass)#4504 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "kad7B7DBRWY" ["related_video_title"]=> string(102) "Целью был Фатих? Почему был казнён Чандарлы Халиль-паша?" ["posted_time"]=> string(19) "2 дня назад" ["channelName"]=> string(3) "GZT" } [1]=> object(stdClass)#4477 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "HgFXp8Nbfb8" ["related_video_title"]=> string(82) "Counting consecutive 1s in a Sequence: A Guide to Fixing Common Python Code Issues" ["posted_time"]=> string(25) "2 недели назад" ["channelName"]=> string(7) "vlogize" } [2]=> object(stdClass)#4502 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "vNipWpflPZc" ["related_video_title"]=> string(88) "All you need to know about Unified Pension System (UPS) for Central Government Employees" ["posted_time"]=> string(21) "1 день назад" ["channelName"]=> string(49) "Pension Fund Regulatory and Development Authority" } [3]=> object(stdClass)#4509 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "-xqHsLE0AfM" ["related_video_title"]=> string(98) "87 Getting Your Data Ready Convert Data To Numbers | Scikit-learn Creating Machine Learning Models" ["posted_time"]=> string(21) "4 года назад" ["channelName"]=> string(16) "Machine Learning" } [4]=> object(stdClass)#4488 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "4SivdTLIwHc" ["related_video_title"]=> string(43) "How to handle imbalanced datasets in Python" ["posted_time"]=> string(21) "4 года назад" ["channelName"]=> string(14) "Data Professor" } [5]=> object(stdClass)#4506 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "G2iVj7WKDFk" ["related_video_title"]=> string(35) "Quick explanation: One-hot encoding" ["posted_time"]=> string(21) "2 года назад" ["channelName"]=> string(11) "Mısra Turp" } [6]=> object(stdClass)#4501 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "EHt_x8r1exU" ["related_video_title"]=> string(60) "End to End Text Classification using Python and Scikit learn" ["posted_time"]=> string(21) "4 года назад" ["channelName"]=> string(13) "AIEngineering" } [7]=> object(stdClass)#4511 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "DIOgdnjv2E0" ["related_video_title"]=> string(91) "Как интегрировать ИИ (#Gemini) в #Obsidian: Ваш личный #copilot" ["posted_time"]=> string(25) "4 месяца назад" ["channelName"]=> string(46) "AiStrata: Центр управления ИИ" } [8]=> object(stdClass)#4487 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "fwY9Qv96DJY" ["related_video_title"]=> string(63) "Machine Learning Tutorial Python - 7: Training and Testing Data" ["posted_time"]=> string(19) "6 лет назад" ["channelName"]=> string(10) "codebasics" } [9]=> object(stdClass)#4505 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "gA3A_epB3So" ["related_video_title"]=> string(164) "База по оптимизации PostgreSQL: схема, индексы, чтение EXPLAIN, методы доступа и соединения, тюнинг" ["posted_time"]=> string(27) "6 месяцев назад" ["channelName"]=> string(29) "Диджитализируй!" } }
Целью был Фатих? Почему был казнён Чандарлы Халиль-паша?

Целью был Фатих? Почему был казнён Чандарлы Халиль-паша?

Counting consecutive 1s in a Sequence: A Guide to Fixing Common Python Code Issues

Counting consecutive 1s in a Sequence: A Guide to Fixing Common Python Code Issues

All you need to know about Unified Pension System (UPS) for Central Government Employees

All you need to know about Unified Pension System (UPS) for Central Government Employees

87 Getting Your Data Ready Convert Data To Numbers | Scikit-learn Creating Machine Learning Models

87 Getting Your Data Ready Convert Data To Numbers | Scikit-learn Creating Machine Learning Models

How to handle imbalanced datasets in Python

How to handle imbalanced datasets in Python

Quick explanation: One-hot encoding

Quick explanation: One-hot encoding

End to End Text Classification using Python and Scikit learn

End to End Text Classification using Python and Scikit learn

Как интегрировать ИИ (#Gemini) в #Obsidian: Ваш личный #copilot

Как интегрировать ИИ (#Gemini) в #Obsidian: Ваш личный #copilot

Machine Learning Tutorial Python - 7: Training and Testing Data

Machine Learning Tutorial Python - 7: Training and Testing Data

База по оптимизации PostgreSQL: схема, индексы, чтение EXPLAIN, методы доступа и соединения, тюнинг

База по оптимизации PostgreSQL: схема, индексы, чтение EXPLAIN, методы доступа и соединения, тюнинг

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]