Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

RecSys 2016: Paper Session 6 - Optimizing Similar Item Recommendations

Автор: ACM RecSys

Загружено: 2017-03-30

Просмотров: 815

Описание:

Yuri M. Brovman, Marie Jacob, Natraj Srinivasan, Stephen Neola, Daniel Galron, Ryan Snyder, Paul Wang
This paper tackles the problem of recommendations in eBay's large semi-structured marketplace. eBay's variable inventory and lack of structured information about listings makes traditional collaborative filtering algorithms difficult to use. We discuss how to overcome these data limitations to produce high quality recommendations in real time with a combination of a customized scalable architecture as well as a widely applicable machine learned ranking model. A pointwise ranking approach is utilized to reduce the ranking problem to a binary classification problem optimized on past user purchase behavior. We present details of a sampling strategy and feature engineering that have been critical to achieve a lift in both purchase through rate (PTR) and revenue.

RecSys 2016: Paper Session 6 - Optimizing Similar Item Recommendations

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

RecSys 2016: Paper Session 6 - A Package Recommendation Framework for Trip Planning Activities

RecSys 2016: Paper Session 6 - A Package Recommendation Framework for Trip Planning Activities

RecSys 2016 Opening Remarks

RecSys 2016 Opening Remarks

47th #ebaytechtalk: Deep Learning for Recommender Systems

47th #ebaytechtalk: Deep Learning for Recommender Systems

RecSys 2016: Paper Session 11 - Using Navigation to Improve Recommendations in Real-Time

RecSys 2016: Paper Session 11 - Using Navigation to Improve Recommendations in Real-Time

Ideologia Rosji jako trwałe źródło zagrożenia || Radosław Sikorski - didaskalia#163

Ideologia Rosji jako trwałe źródło zagrożenia || Radosław Sikorski - didaskalia#163

'Godfather of AI' warns of existential risks | GZERO World with Ian Bremmer

'Godfather of AI' warns of existential risks | GZERO World with Ian Bremmer

China Decode: What China’s MASSIVE Trade Surplus Really Means

China Decode: What China’s MASSIVE Trade Surplus Really Means

Naśladować III Rzeszę? - historia Wielkiego Kryzysu. Historia Bez Cenzury

Naśladować III Rzeszę? - historia Wielkiego Kryzysu. Historia Bez Cenzury

Как реорганизовать невероятно сложную бизнес-логику (шаг за шагом)

Как реорганизовать невероятно сложную бизнес-логику (шаг за шагом)

Keynote Jure Leskovec

Keynote Jure Leskovec

Frustracja społeczeństwa a

Frustracja społeczeństwa a "nadprodukcja elit". Ekspert wskazuje przyczyny

Dzisiaj Informacje Telewizja Republika 11.12.2025 | TV Republika

Dzisiaj Informacje Telewizja Republika 11.12.2025 | TV Republika

Keynote Xavier Amatriain

Keynote Xavier Amatriain

„Ameryka nas nie obroni. Polska musi przygotować się sama.” - Jacek Bartosiak | ŻEBY WIEDZIEĆ #8

„Ameryka nas nie obroni. Polska musi przygotować się sama.” - Jacek Bartosiak | ŻEBY WIEDZIEĆ #8

Cross-Batch Aggregation for Streaming Learning from Label Proportions in Industrial-Scale RecSys

Cross-Batch Aggregation for Streaming Learning from Label Proportions in Industrial-Scale RecSys

Recent Advances in Generative Conversational Recommender Systems

Recent Advances in Generative Conversational Recommender Systems

Sklepy z elektroniką w Chinach!

Sklepy z elektroniką w Chinach!

HIT! Skazany Gawłowski chce zabrać pieniądze Kancelarii Prezydenta! | W Punkt

HIT! Skazany Gawłowski chce zabrać pieniądze Kancelarii Prezydenta! | W Punkt

LLM-RecG: A Semantic Bias-Aware Framework for Zero-Shot Sequential Recommendation

LLM-RecG: A Semantic Bias-Aware Framework for Zero-Shot Sequential Recommendation

Suggest, Complement, Inspire: Story of Two-Tower Recommendations at Allegro.com

Suggest, Complement, Inspire: Story of Two-Tower Recommendations at Allegro.com

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]