Soil Image Classification with Transfer Learning
Автор: yadvendra garg
Загружено: 25 мая 2025 г.
Просмотров: 4 просмотра
In this video, I walk you through my full solution to the Soil Image Classification Kaggle challenge by Annam AI — where we achieved a perfect leaderboard score of 1.00!
💡 We used EfficientNet-B3 and ResNet-50, fine-tuned on a custom dataset of 4 soil types: Alluvial, Red, Black, and Clay. Our final model was an ensemble of both, boosted with transfer learning, focal loss, and data augmentations.
📊 Key Highlights:
Custom PyTorch Dataset and DataLoader classes
Image augmentations and preprocessing using ImageNet stats
Stratified train/val split to handle class imbalance
Fine-tuning EfficientNet and ResNet with ReduceLROnPlateau and Early Stopping
Ensemble averaging and macro F1 evaluation
Confusion matrix, error analysis, and final predictions
🚀 Final Model Scores:
ResNet-50: F1 = 1.0000, Acc = 98.78%
EfficientNet-B3: F1 = 0.9783, Acc = 97.14%
Ensemble: F1 = 0.9957, Accuracy = 99.59%
👉 Watch till the end for the test set submission and analysis!
🔗 Dataset: Kaggle
Don’t forget to like, subscribe, and drop your questions or feedback in the comments!
#soilclassificationkaggle
#soilimageclassification
#kaggleimageclassificationproject
#cnnsoilclassification
#efficientnetsoilclassification
#resnettransferlearningtutorial
#kaggle #transferlearning #ensemble
#imageclassificationensemble #pytorch
#pytorch transfer learning tutorial
#soildatasetkaggleannamai
#cnn vs transfer learning
#focallosspytorch
#ensemble learning kaggle
#bestkagglenotebooksoil

Доступные форматы для скачивания:
Скачать видео mp4
-
Информация по загрузке: