Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

TensorFlow World: How Criteo optimized and sped up its TF models by 10x and served them under 5 ms

Автор: Nicolas Kowalski

Загружено: 28 нояб. 2019 г.

Просмотров: 155 просмотров

Описание:

This is the talk we presented at TensorFlow World during which we described how Criteo optimized and sped up its TF models by 10x and served them under 5 ms.

You can find me on LinkedIn:   / kowalskinicolas  

If you live in Paris and are interested in TensorFlow, don't hesitate to join our meetup: https://www.meetup.com/Paris-Tensorfl...

Here is the abstract of our talk:

When you access a web page, bidders such as Criteo must determine in a few dozens of milliseconds if they want to purchase the advertising space on the page. At that moment, a real-time auction takes place, and once you remove all the communication exchange delays, it leaves a handful of milliseconds to compute exactly how much to bid. In the past year, Criteo has put a large amount of effort into reshaping its in-house machine learning stack responsible for making such predictions—in particular, opening it to new technologies such as TensorFlow.

Unfortunately, even for simple logistic regression models and small neural networks, Criteo’s initial TensorFlow implementations saw inference time increase by 100, going from 300 microseconds to 30 milliseconds.


Nicolas Kowalski and Axel Antoniotti outline how Criteo approached this issue, discussing how Criteo profiled its model to understand its bottleneck; why commonly shared solutions such as optimizing TensorFlow build for the target hardware, freezing and cleaning up the model, and using accelerated linear algebra (XLA) ended up being lackluster; and how Criteo rewrote is models from scratch, reimplementing cross-features and hashing functions using low-level TF operations in order to factorize as much as possible all TensorFlow nodes in its model.

TensorFlow World: How Criteo optimized and sped up its TF models by 10x and served them under 5 ms

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Градиентный спуск, как обучаются нейросети | Глава 2, Глубинное обучение

Градиентный спуск, как обучаются нейросети | Глава 2, Глубинное обучение

Аналоговые компьютеры возвращаются? Часть 2 [Veritasium]

Аналоговые компьютеры возвращаются? Часть 2 [Veritasium]

Introduction to Generative AI

Introduction to Generative AI

What do tech pioneers think about the AI revolution? - BBC World Service

What do tech pioneers think about the AI revolution? - BBC World Service

The Incredible Properties of Composite Materials

The Incredible Properties of Composite Materials

How do Video Game Graphics Work?

How do Video Game Graphics Work?

Сети для несетевиков // OSI/ISO, IP и MAC, NAT, TCP и UDP, DNS

Сети для несетевиков // OSI/ISO, IP и MAC, NAT, TCP и UDP, DNS

But what is the Fourier Transform?  A visual introduction.

But what is the Fourier Transform? A visual introduction.

Blender Tutorial for Complete Beginners - Part 1

Blender Tutorial for Complete Beginners - Part 1

30 Minute Focus - Morning Story ⚡ Brain.fm ⚡ Music for Maximum Focus and Concentration

30 Minute Focus - Morning Story ⚡ Brain.fm ⚡ Music for Maximum Focus and Concentration

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]