Find the Limit of a Function using L'Hôpital's Rule
Автор: sumchief
Загружено: 2022-07-05
Просмотров: 22
Find the limit of a function where the numerator f(x) = 3^x-3^-x and g(x) = 2^x=2^-x , The initial value at zero gives us a 0/0 situation which is undefined . This is one of the rules required for L'Hôpital's . The other is that the function f(x)/g(x) where f(x) and g(x) are both continuous and differentiable .
Then we take the limit x approaches 0 of f'(x)/g'(x) and we do this 3 times as the first 2 give us a 0/0 situation .
There is a graph at the end of the video showing the graph of the function (3^x-3^-x)/(2^x=2^-x) powered by
https://www.transum.org/Maths/Activit...
• Use L'Hopitals Rule to find the limit of s...
• Use L'Hopitals Rule to find the limit of c...
• Using L'Hôpital's Rule to Find The Limit
#calculus
#limits
#algebratricks
#limitsandderivatives
#derivativeformulas
#derivativeofcos
#lhopital
#realanalysis
#calc3 #sumchief
#somesums
Доступные форматы для скачивания:
Скачать видео mp4
-
Информация по загрузке: