Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Masking in Gen AI Training: The Hidden Genius in Transformers

Автор: Super Data Science

Загружено: 2024-12-27

Просмотров: 1215

Описание:

In this tutorial, we dive deep into the concept of masking and its critical role in training large language models. Learn why masking is essential, how it prevents cheating, and how triangular masks enable causal predictions. We'll also explore the mathematical foundations of masking, including its application in multi-head attention and dot product calculations.

Course Link HERE: https://sds.courses/genAI

You can also find us here:
Website: https://www.superdatascience.com/
Facebook:   / superdatascience  
Twitter:   / superdatasci  
LinkedIn:   / superdatascience  

Contact us at: [email protected]

Chapters
00:00 Introduction to Masking
00:30 Masking vs. Inference
01:04 Training Transformers with Masking
02:14 Full Sentence Training Approach
03:21 Multi-Head Attention & Context
04:18 Preventing Cheating with Masking
05:22 Architecture of Masking in Attention
06:33 Query-Key Indexing with Masking
07:37 Dot Products and Masking Math
08:47 Applying Negative Infinity in Masking
09:46 Weighted Sum and Softmax with Masks
11:18 Context-Aware Representations Explained
12:29 Triangular Masking Overview
13:04 Masking in Different Sentence Lengths
14:31 Creating Training Samples with Masking
15:35 Causal Masks in Transformers
16:08 Closing and Next Steps

#ai #MachineLearning #Transformers #LLM #Masking #DeepLearning #Tutorial #ArtificialIntelligence #NeuralNetworks #GPT #AITraining #LanguageModels #AIResearch #CausalMasking #TechTutorials

The video is an in-depth tutorial on the concept of masking in the training of large language models (LLMs). It explains how masking plays a critical role in preventing Transformers from "cheating" during training by looking at future words in a sentence.

The video covers:
The difference between the use of masking in inference and training processes.
How masking ensures that Transformers make accurate, context-aware predictions without relying on future information.
The concept of triangular masking, also known as causal masking, which hides future words to enable sequential, logical predictions in training.
The mathematical implementation of masking using dot products, negative infinity, and softmax functions to create masked attention.
How the multi-head attention mechanism works with masked sequences to generate context-aware vector representations for training.
The tutorial also highlights the importance of masking in training models like GPT, explaining why it's essential for creating accurate and robust AI systems.

Masking in Gen AI Training: The Hidden Genius in Transformers

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

The Role of Residual Connections and Layer Normalization in Neural Networks and Gen AI Models

The Role of Residual Connections and Layer Normalization in Neural Networks and Gen AI Models

Microchip Breakthrough: We're Moving Beyond Silicon

Microchip Breakthrough: We're Moving Beyond Silicon

How GPTs (Gen AI) Are Trained Step-by-Step

How GPTs (Gen AI) Are Trained Step-by-Step

Apriori Algorithm Association Rule Learning

Apriori Algorithm Association Rule Learning

GPT vs BERT - WHICH IS BETTER ?

GPT vs BERT - WHICH IS BETTER ?

Przerażający rytuał małżeński, który Rzym próbował wymazać z historii – ślub Kaliguli

Przerażający rytuał małżeński, który Rzym próbował wymazać z historii – ślub Kaliguli

🔥 ChatGPT для науки о данных и машинного обучения: 5 вариантов использования

🔥 ChatGPT для науки о данных и машинного обучения: 5 вариантов использования

This SIMPLE XGBoost Trick Boosts Your Accuracy - XGBoost Classification Step-by-Step Guide

This SIMPLE XGBoost Trick Boosts Your Accuracy - XGBoost Classification Step-by-Step Guide

How Do Self Organizing Maps (SOMs) in Artificial Intelligence Learn? What Makes Them So POWERFUL?

How Do Self Organizing Maps (SOMs) in Artificial Intelligence Learn? What Makes Them So POWERFUL?

Input Embeddings: How to Create Semantic Word Embeddings for AI & Natural Language Processing (NLP)

Input Embeddings: How to Create Semantic Word Embeddings for AI & Natural Language Processing (NLP)

Серебро по $71 — это ГЛУБОКИЙ НАРКОЗ, который уничтожит ваш КАПИТАЛ | Уоррен Баффет

Серебро по $71 — это ГЛУБОКИЙ НАРКОЗ, который уничтожит ваш КАПИТАЛ | Уоррен Баффет

To, co Mongołowie zrobili z rodziną królewską Bagdadu, wstrząśnie tobą.

To, co Mongołowie zrobili z rodziną królewską Bagdadu, wstrząśnie tobą.

Restricted Boltzmann Machines for AI Applications - How AI Predicts Your Preferences

Restricted Boltzmann Machines for AI Applications - How AI Predicts Your Preferences

Boltzmann Machines: How This Underrated Model is Transforming AI

Boltzmann Machines: How This Underrated Model is Transforming AI

How XGBoost Builds Smarter Decision Trees

How XGBoost Builds Smarter Decision Trees

LEARN PLOTLY - WORKING WITH CUSTOM DATA

LEARN PLOTLY - WORKING WITH CUSTOM DATA

KAIST XAI Tutorial 2025 | On the Biology of a Large Language Model | Artyom Stitsyuk (SAIL, KAIST)

KAIST XAI Tutorial 2025 | On the Biology of a Large Language Model | Artyom Stitsyuk (SAIL, KAIST)

What Is Tokenization in AI? Understanding Tokenization for Large Language Models

What Is Tokenization in AI? Understanding Tokenization for Large Language Models

How do Self Organizing Maps Work? Self Organizing Maps - Part 1

How do Self Organizing Maps Work? Self Organizing Maps - Part 1

Deep Learning Simplified: How NEURAL NETWORKS Work? [Real-World Example]

Deep Learning Simplified: How NEURAL NETWORKS Work? [Real-World Example]

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]