Maximum Likelihood in Stata, Step by Step (5-Minute Crash Course)
Автор: In Case of Econ Struggles
Загружено: 2025-07-20
Просмотров: 207
In this 5-minute tutorial, I walk through the basics of implementing Maximum Likelihood Estimation (MLE) in Stata using a custom likelihood function. If you're a grad student or researcher working with ml, this video will help you get started faster.
I show how to:
Write a likelihood evaluator program
Use ml model and ml maximize
Specify log-likelihoods and transform parameters
The code example is designed to highlight the structure and logic behind MLE in Stata so you can apply it to your own work.
🧠 What’s covered: args, tempvar, log-likelihood coding, using ml model, estimation output.
📂 Full code available here
clear all
set more off
cls
sysuse auto
*********OLS Method
reg price mpg weight
********MLE Method
cap program drop mle_demo
program define mle_demo
*Arguments likelihood function (lnf), coefficient matrix (xb) and variance-covariance matrix (sigma)
args lnf xb v
*Generate variables as temporary variables
tempvar e sig2
gen `e'=$ML_y1-`xb'
gen double `sig2' =`v'^2
*Use likelihood function using normal distribution assumption
replace `lnf'=-0.5*ln(2*_pi) - ln(`v')-0.5*(`e'^2)/`sig2'
end
***Initialize MLE
ml model lf mle_demo (price=mpg weight) /v
***Check It Works/Test It
*ml check
**Run it
ml maximize
**Compare
reg price mpg weight
—
✅ Subscribe if you want more grad-level econometrics content
🔔 Hit the bell to stay updated on future Stata and research methods videos
Доступные форматы для скачивания:
Скачать видео mp4
-
Информация по загрузке: