🔵 Radius of the Big Circle? | Geometry Problem with a Hidden Trick
Автор: Math Spark
Загружено: 2026-01-26
Просмотров: 18
🔵 Can you find the radius of the big circle using pure geometry — no guessing, no formulas, just logic?
In this video, we solve a beautiful circle geometry problem using classical theorems and triangle similarity.
✏️ Solution Strategy:
1️⃣ First, draw the radius of the small circle to the tangent point.
2️⃣ Use the geometry theorem:
📐 The radius drawn to a point of tangency is perpendicular to the tangent.
This creates a right angle and allows us to form two triangles.
3️⃣ Then apply similar triangles:
🔁 Corresponding sides of similar triangles are proportional.
We write the ratio of corresponding sides, use the given length 12, and substitute it into the ratio equation.
4️⃣ This gives the radius of the small circle.
5️⃣ Since the radii are in the ratio 1 : 3, we simply triple the small radius to get the radius of the big circle.
🎯 This problem beautifully combines:
Tangent–radius theorem
Triangle similarity
Proportional reasoning
Circle geometry fundamentals
Perfect for:
High school geometry
Olympiad-style problems
Exam preparation
Conceptual learning
Follow MathSpark for more clean geometry logic, smart constructions, and problem-solving tricks!
#CircleGeometry #GeometryTheorems #SimilarTriangles #TangentTheorem
#MathTrick #OlympiadMath #HighSchoolMath #GeometryProblems
#MathShorts #YouTubeShorts #STEM #LearnMath #MathSpark
#Radius #CircleTheorems #TriangleSimilarity
Доступные форматы для скачивания:
Скачать видео mp4
-
Информация по загрузке: