Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Recurrent Neural Networks (RNNs and LSTMs) explained in detail !

Автор: The Semicolon

Загружено: 2018-01-30

Просмотров: 130101

Описание:

#RNN #LSTM #DeepLearning #MachineLearning #DataScience #RecurrentNerualNetworks

Are you ready to dive into the world of Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTMs)? 🤖 In this comprehensive tutorial, we break down the complexities of RNNs and LSTMs, showing how they process sequential data and power applications like natural language processing, time-series prediction, and speech recognition.

🎯 What You’ll Learn:

The fundamentals of RNNs and why they are essential in deep learning
How LSTMs overcome the limitations of traditional RNNs
Real-world applications of RNNs and LSTMs
Step-by-step explanation of architecture and functionality

🕒 Timestamps:
0:00 Introduction
0:27 Applications of RNNs
1:00 Problems with Neural Networks
1:27 The solution (RNNs)!
1:42 RNNs Working
3:13 RNNs Unrolled
4:34 Vanishing Gradient Problem in RNNs
5:25 LSTM Explained
6:53 LSTM Unrolled

Recurrent Neural Networks (RNNs and LSTMs) explained in detail !

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

array(10) { [0]=> object(stdClass)#5699 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "iMIWee_PXl8" ["related_video_title"]=> string(73) "Recurrent Neural Networks (LSTM / RNN) Implementation with Keras - Python" ["posted_time"]=> string(19) "7 лет назад" ["channelName"]=> string(13) "The Semicolon" } [1]=> object(stdClass)#5672 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "YCzL96nL7j0" ["related_video_title"]=> string(48) "Long Short-Term Memory (LSTM), Clearly Explained" ["posted_time"]=> string(21) "2 года назад" ["channelName"]=> string(27) "StatQuest with Josh Starmer" } [2]=> object(stdClass)#5697 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "nFTQ7kHQWtc" ["related_video_title"]=> string(63) "MIT 6.S094: Recurrent Neural Networks for Steering Through Time" ["posted_time"]=> string(19) "8 лет назад" ["channelName"]=> string(11) "Lex Fridman" } [3]=> object(stdClass)#5704 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "AsNTP8Kwu80" ["related_video_title"]=> string(54) "Recurrent Neural Networks (RNNs), Clearly Explained!!!" ["posted_time"]=> string(21) "2 года назад" ["channelName"]=> string(27) "StatQuest with Josh Starmer" } [4]=> object(stdClass)#5683 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "6niqTuYFZLQ" ["related_video_title"]=> string(38) "Lecture 10 | Recurrent Neural Networks" ["posted_time"]=> string(19) "7 лет назад" ["channelName"]=> string(41) "Stanford University School of Engineering" } [5]=> object(stdClass)#5701 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "yCC09vCHzF8" ["related_video_title"]=> string(81) "CS231n Winter 2016: Lecture 10: Recurrent Neural Networks, Image Captioning, LSTM" ["posted_time"]=> string(19) "9 лет назад" ["channelName"]=> string(15) "Andrej Karpathy" } [6]=> object(stdClass)#5696 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "fsSs7QJq0cU" ["related_video_title"]=> string(178) "Иран нанес самый мощный ракетный удар по Израилю – Тель-Авив объявляет чрезвычайное положение" ["posted_time"]=> string(23) "9 часов назад" ["channelName"]=> string(20) "JET TEMPUR INDONESIA" } [7]=> object(stdClass)#5706 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "UcuSTT5TlE4" ["related_video_title"]=> string(134) "⚡️Путин отказался от капитуляции Украины || Срочное решение США по Ирану" ["posted_time"]=> string(23) "7 часов назад" ["channelName"]=> string(23) "Время Прядко" } [8]=> object(stdClass)#5682 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "lWkFhVq9-nc" ["related_video_title"]=> string(98) "Recurrent Neural Network (RNN) Tutorial | RNN LSTM Tutorial | Deep Learning Tutorial | Simplilearn" ["posted_time"]=> string(19) "7 лет назад" ["channelName"]=> string(11) "Simplilearn" } [9]=> object(stdClass)#5700 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "ySEx_Bqxvvo" ["related_video_title"]=> string(73) "MIT 6.S191 (2023): Recurrent Neural Networks, Transformers, and Attention" ["posted_time"]=> string(21) "2 года назад" ["channelName"]=> string(15) "Alexander Amini" } }
Recurrent Neural Networks (LSTM / RNN) Implementation with Keras - Python

Recurrent Neural Networks (LSTM / RNN) Implementation with Keras - Python

Long Short-Term Memory (LSTM), Clearly Explained

Long Short-Term Memory (LSTM), Clearly Explained

MIT 6.S094: Recurrent Neural Networks for Steering Through Time

MIT 6.S094: Recurrent Neural Networks for Steering Through Time

Recurrent Neural Networks (RNNs), Clearly Explained!!!

Recurrent Neural Networks (RNNs), Clearly Explained!!!

Lecture 10 | Recurrent Neural Networks

Lecture 10 | Recurrent Neural Networks

CS231n Winter 2016: Lecture 10: Recurrent Neural Networks, Image Captioning, LSTM

CS231n Winter 2016: Lecture 10: Recurrent Neural Networks, Image Captioning, LSTM

Иран нанес самый мощный ракетный удар по Израилю – Тель-Авив объявляет чрезвычайное положение

Иран нанес самый мощный ракетный удар по Израилю – Тель-Авив объявляет чрезвычайное положение

⚡️Путин отказался от капитуляции Украины || Срочное решение США по Ирану

⚡️Путин отказался от капитуляции Украины || Срочное решение США по Ирану

Recurrent Neural Network (RNN) Tutorial | RNN LSTM Tutorial | Deep Learning Tutorial | Simplilearn

Recurrent Neural Network (RNN) Tutorial | RNN LSTM Tutorial | Deep Learning Tutorial | Simplilearn

MIT 6.S191 (2023): Recurrent Neural Networks, Transformers, and Attention

MIT 6.S191 (2023): Recurrent Neural Networks, Transformers, and Attention

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]