Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Compact iff Sequentially Compact full proof, Real Analysis II

Автор: Dr. Bevin Maultsby

Загружено: 2024-09-18

Просмотров: 1081

Описание:

This lecture proves the equivalence between compactness and sequential compactness in any metric space, showing that a set is compact if and only if it is sequentially compact.

First, we review the definitions: a set is compact if every open cover has a finite subcover, and sequentially compact if every sequence has a converging subsequence whose limit is within the set. The goal of the lecture is to prove that these two properties are equivalent.

The forward direction is proved via the contrapositive: if a set is not sequentially compact, it is not compact. We construct an open cover with no finite subcover by isolating sequence points with neighborhoods. The proof concludes by showing that if the sequence lacks a convergent subsequence, the set fails to be compact.

The backward direction involves proving a lemma through contradiction. It shows that for a sequentially compact set, a special radius can be chosen around each point such that the neighborhoods lie within a single member of the open cover. Using the fact that sequentially compact sets are totally bounded, we identify a finite subcover, confirming that the set is compact.

We arrive at the major conclusion: compactness implies the set is closed and bounded, setting the stage for the Heine-Borel theorem in Euclidean spaces, where compactness is equivalent to a set being closed and bounded.

#Mathematics #RealAnalysis #AdvancedCalculus #Topology #BolzanoWeierstrass #MetricSpaces #HeineBorel #SetTheory #ClosedSets

Compact iff Sequentially Compact full proof, Real Analysis II

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

array(10) { [0]=> object(stdClass)#4710 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "p1l0grfxe7w" ["related_video_title"]=> string(50) "Nested Compact Set Theorem, Real Analysis I and II" ["posted_time"]=> string(27) "9 месяцев назад" ["channelName"]=> string(18) "Dr. Bevin Maultsby" } [1]=> object(stdClass)#4683 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "m2iG0vR-7fM" ["related_video_title"]=> string(61) "Cauchy sequences and complete metric spaces, Real Analysis II" ["posted_time"]=> string(27) "9 месяцев назад" ["channelName"]=> string(18) "Dr. Bevin Maultsby" } [2]=> object(stdClass)#4708 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "fP9FGQIqBgg" ["related_video_title"]=> string(68) "Sequentially compact sets and totally bounded sets, Real Analysis II" ["posted_time"]=> string(27) "9 месяцев назад" ["channelName"]=> string(18) "Dr. Bevin Maultsby" } [3]=> object(stdClass)#4715 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "qdhwG724-Xw" ["related_video_title"]=> string(37) "Functional Analysis 16 | Compact Sets" ["posted_time"]=> string(21) "4 года назад" ["channelName"]=> string(30) "The Bright Side of Mathematics" } [4]=> object(stdClass)#4694 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "tWbkE3uYvlg" ["related_video_title"]=> string(72) "Радиус красной окружности? Сложность 3/5" ["posted_time"]=> string(25) "3 недели назад" ["channelName"]=> string(31) "Дмитрий Сойников" } [5]=> object(stdClass)#4712 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "QWx6QBlpvns" ["related_video_title"]=> string(88) "1. Встреча на Патриарших. Мастер и Маргарита. Full HD" ["posted_time"]=> string(19) "1 год назад" ["channelName"]=> string(19) "NightHORROR_Channel" } [6]=> object(stdClass)#4707 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "NHsDeapLxNs" ["related_video_title"]=> string(109) "Разбор задач с Мишенькой: отбор на Международную олимпиаду!" ["posted_time"]=> string(23) "1 месяц назад" ["channelName"]=> string(75) "Маткульт-привет! :: Алексей Савватеев и Ко" } [7]=> object(stdClass)#4717 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "-UszpbyJXqo" ["related_video_title"]=> string(105) "ПАРАДОКС БЕРРИ: Один алгоритм для решения всех задач | LAPLAS" ["posted_time"]=> string(25) "2 недели назад" ["channelName"]=> string(43) "Высшая математика | LAPLAS " } [8]=> object(stdClass)#4693 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "pxyRbnMikTA" ["related_video_title"]=> string(128) "Петр Толстой ВЫ ЧЁ, ОХАМЕЛИ? Наглый УЛЬТИМАТУМ Баку после рейда на ОПГ!" ["posted_time"]=> string(23) "6 часов назад" ["channelName"]=> string(61) "Последние новости дня на этот час" } [9]=> object(stdClass)#4711 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "ujtflGrCfDE" ["related_video_title"]=> string(69) "Rudin Illustrated Proof: Compact subsets of metric spaces are closed." ["posted_time"]=> string(21) "4 года назад" ["channelName"]=> string(10) "Ben Tupper" } }
Nested Compact Set Theorem, Real Analysis I and II

Nested Compact Set Theorem, Real Analysis I and II

Cauchy sequences and complete metric spaces, Real Analysis II

Cauchy sequences and complete metric spaces, Real Analysis II

Sequentially compact sets and totally bounded sets, Real Analysis II

Sequentially compact sets and totally bounded sets, Real Analysis II

Functional Analysis 16 | Compact Sets

Functional Analysis 16 | Compact Sets

Радиус красной окружности? Сложность 3/5

Радиус красной окружности? Сложность 3/5

1. Встреча на Патриарших. Мастер и Маргарита. Full HD

1. Встреча на Патриарших. Мастер и Маргарита. Full HD

Разбор задач с Мишенькой: отбор на Международную олимпиаду!

Разбор задач с Мишенькой: отбор на Международную олимпиаду!

ПАРАДОКС БЕРРИ: Один алгоритм для решения всех задач | LAPLAS

ПАРАДОКС БЕРРИ: Один алгоритм для решения всех задач | LAPLAS

Петр Толстой ВЫ ЧЁ, ОХАМЕЛИ? Наглый УЛЬТИМАТУМ Баку после рейда на ОПГ!

Петр Толстой ВЫ ЧЁ, ОХАМЕЛИ? Наглый УЛЬТИМАТУМ Баку после рейда на ОПГ!

Rudin Illustrated Proof: Compact subsets of metric spaces are closed.

Rudin Illustrated Proof: Compact subsets of metric spaces are closed.

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]