Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Part 40. Feature Engineering: Wrapper Feature Selection in Machine Learning

Автор: Morpho Prof

Загружено: 2025-07-21

Просмотров: 89

Описание:

🎬 Welcome to Machine Learning Simplified with Python! 🚀

Are you ready to step into the world of Artificial Intelligence and Machine Learning using Python? Whether you're a student, researcher, or aspiring data scientist, this channel is your one-stop guide to mastering machine learning from the ground up — no prior experience required!

In this series, you'll learn:

📌 What is Machine Learning?
Explore the core concepts, types of learning (Supervised, Unsupervised, Reinforcement), and real-world applications that power industries today.

🛠️ Set Up Your Environment
We'll guide you through installing Anaconda or Miniconda, working with Jupyter Notebooks, and setting up essential libraries like NumPy, Pandas, Matplotlib, Seaborn, and Scikit-learn.

🐍 Python Essentials for ML
Master the Python skills you need: data types, loops, functions, and powerful tools for data manipulation and wrangling.

📊 Exploratory Data Analysis (EDA)
Learn how to clean, visualize, and understand your data with histograms, heatmaps, scatter plots, and descriptive stats using Pandas, Matplotlib, and Seaborn.

⚙️ Introduction to Scikit-learn
Get hands-on with the most popular ML library — Scikit-learn. Learn how to split data, define features and targets, and build a full ML pipeline.

🤖 Supervised Learning Models
Dive into powerful algorithms like Logistic Regression, k-Nearest Neighbors, and Decision Trees for classification, and Linear & Polynomial Regression for prediction tasks — along with how to evaluate them using accuracy, F1 score, MAE, RMSE, and more.

🧠 Unsupervised Learning Techniques
Discover hidden patterns in your data with K-Means Clustering, Hierarchical Clustering, and Principal Component Analysis (PCA) for dimensionality reduction.

🧪 Model Evaluation & Tuning
Boost your model’s performance with Cross-Validation, GridSearchCV, and learn how to avoid overfitting and underfitting like a pro.

📁 Mini Projects
Apply what you’ve learned to real-world datasets like Titanic, Iris, and House Prices — covering the full ML workflow from data cleaning to model deployment.

🚀 Advanced Topics & Deployment
Take your skills further with an introduction to Deep Learning using Keras, handle time-series data, and learn to deploy models using Streamlit or Flask.

💡 Bonus Content
• Ready-to-use Jupyter Notebooks
• Quizzes and exercises for hands-on practice
• Google Colab support for easy collaboration

🎓 Learn by doing. Build confidence. Apply your skills.

👉 Subscribe and follow along — because this is more than just a course. It's your gateway to becoming a Machine Learning practitioner with Python. Let's get started!

#machinelearning #python #datascience #mlwithpython #artificialintelligence #deeplearning #scikitlearn #dataanalytics #edatutorial #jupyternotebook #kmeans #LinearRegression #polynomialregression #logisticregression #pandas #numpy #seaborn #matplotlib #pythonforbeginners #MLProjects #streamlit #flaskdeployment #googlecolab #mlcourse #learnmachinelearning
#MAPC #AndrewsCurves #RadViz #2DKernelDensityEstimation #interactive3d #QQPlots, #HeatmapwithClustering, #featureranking , #Time-SeriesPlot #CustomCompositeVisualization
#naivebayes #decisiontree #svm #stochasticgradientdescent #sgd
#artificialneuralnetwork #ann #bestmodel #ensemble #kmeansclustering
#MeanShiftClustering #hierarchicalclustering #agglomerative #dbscan #apriori #frequentpattern #eclat #principalcomponentanalysis #pca #svd #featureengineering #featureselection #featureextraction #filtermethods #wrappermethods #embeddedmethods

Part 40. Feature Engineering: Wrapper Feature Selection in Machine Learning

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Part 41. Feature Engineering: Embedded Feature Selection in Machine Learning

Part 41. Feature Engineering: Embedded Feature Selection in Machine Learning

Визуализация скрытого пространства: PCA, t-SNE, UMAP | Глубокое обучение с анимацией

Визуализация скрытого пространства: PCA, t-SNE, UMAP | Глубокое обучение с анимацией

Твоя ПЕРВАЯ НЕЙРОСЕТЬ на Python с нуля! | За 10 минут :3

Твоя ПЕРВАЯ НЕЙРОСЕТЬ на Python с нуля! | За 10 минут :3

Что такое стек ИИ? Магистратура LLM, RAG и аппаратное обеспечение ИИ

Что такое стек ИИ? Магистратура LLM, RAG и аппаратное обеспечение ИИ

LLM fine-tuning или ОБУЧЕНИЕ малой модели? Мы проверили!

LLM fine-tuning или ОБУЧЕНИЕ малой модели? Мы проверили!

Excel против Power BI против SQL против Python | Сравнение на фондовом рынке

Excel против Power BI против SQL против Python | Сравнение на фондовом рынке

Part 44. Cross Validation in ML: Basic Understanding

Part 44. Cross Validation in ML: Basic Understanding

Отказ от территорий? / Войска оставили позиции

Отказ от территорий? / Войска оставили позиции

Почему «Трансформеры» заменяют CNN?

Почему «Трансформеры» заменяют CNN?

Лижут ли Вас Собаки? ВОТ ЧТО ЭТО ЗНАЧИТ (вас шокирует)!

Лижут ли Вас Собаки? ВОТ ЧТО ЭТО ЗНАЧИТ (вас шокирует)!

Part 1: Machine Learning Simplified with Python - An Introduction

Part 1: Machine Learning Simplified with Python - An Introduction

Алгоритм случайного леса наглядно объяснен!

Алгоритм случайного леса наглядно объяснен!

Part 43. Hyperparameter Tuning in ML: Bayesian Optimization VS Optuna (Which one is more efficient?)

Part 43. Hyperparameter Tuning in ML: Bayesian Optimization VS Optuna (Which one is more efficient?)

Декораторы Python — наглядное объяснение

Декораторы Python — наглядное объяснение

20 концепций искусственного интеллекта, объясненных за 40 минут

20 концепций искусственного интеллекта, объясненных за 40 минут

Part 37. Unsupervised Learning: Singular Value Decomposition - [Machine Learning Series]

Part 37. Unsupervised Learning: Singular Value Decomposition - [Machine Learning Series]

Part 42. Hyperparameter Tuning in ML: Grid Search vs Randomized Search (Which one is better?)

Part 42. Hyperparameter Tuning in ML: Grid Search vs Randomized Search (Which one is better?)

Part 36. Unsupervised Learning: Principal Component Analysis - [Machine Learning Series]

Part 36. Unsupervised Learning: Principal Component Analysis - [Machine Learning Series]

Краткое объяснение больших языковых моделей

Краткое объяснение больших языковых моделей

Превратите ЛЮБОЙ файл в знания LLM за СЕКУНДЫ

Превратите ЛЮБОЙ файл в знания LLM за СЕКУНДЫ

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: infodtube@gmail.com