Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

🚀 Build an End-to-End MLOps Pipeline with Airflow, Streamlit, Docker, and Kubernetes! | Tutorial

Автор: iQuant

Загружено: 2025-05-09

Просмотров: 1628

Описание:

Support Us: https://buymeacoffee.com/iquantconsult
GitHub Repo: https://github.com/iQuantC/Airflow-Pi...

📌 Description:

Welcome to this beginner-friendly tutorial where we dive into the world of MLOps by building a complete machine learning pipeline! In this video, we walk you through creating an Apache Airflow pipeline to load, train, and evaluate a ML model, save it, and make predictions. Then, we deploy the model with a sleek Streamlit UI, containerize it with Docker, and scale it with Kubernetes. Perfect for anyone starting their MLOps journey! 🎓


🔍 What You'll Learn:

1. How to set up an Airflow DAG to automate loading, training, evaluating, and predicting with a logistic regression model on the Iris dataset.
2. Saving and loading a trained model using joblib.
3. Building an interactive Streamlit app to make predictions with the trained model.
4. Containerizing the Streamlit app with Docker for portability.
5. Deploying the app to Kubernetes using Minikube for scalable production-ready deployment.
6. Troubleshooting common issues like version mismatches, file paths, and container errors.


💻 Tech Stack:

1. Python: For model training and Streamlit app.
2. Apache Airflow: To orchestrate the ML pipeline.
3. Scikit-learn: For logistic regression.
4. Streamlit: For the user interface.
5. Docker: For containerization.
6. Kubernetes (Minikube): For deployment.
7. Joblib & Pandas: For model persistence and data handling.


🎯 Why Watch?

This project is perfect for beginners who want to learn MLOps from scratch! We cover everything from setting up Airflow to deploying a machine learning model in production. Follow along to understand how to automate ML workflows, create user-friendly apps, and use modern deployment tools like Docker and Kubernetes. By the end, you’ll have a fully functional ML pipeline you can showcase in your portfolio! 🚀


👉 Timestamps:

0:00 - Introduction
1:00 - Code Overview
13:00 - Setting up Python Environment
16:15 - Setting up Airflow Environment
24:02 - Training and saving the ML model with Airflow Pipeline
29:47 - Loading the ML model with Streamlit UI
34:08 - Containerizing ML model with Docker
46:28 - Deploying to Kubernetes with Minikube
53:51 - Wrap-up and Clean-up

🔔 Like, Subscribe, and Share!If you found this tutorial helpful, please give it a thumbs up 👍, subscribe for more MLOps and machine learning content, and share it with your friends! Drop your questions or feedback in the comments below—I’d love to hear from you! 💬
#MLOps #Airflow #Streamlit #Docker #Kubernetes #MachineLearning #Python #IrisDataset #DataScience #BeginnerTutorial

Disclaimer: This video is for educational purposes only. The tools and technologies demonstrated are subject to change, and viewers are encouraged to refer to the official documentation for the most up-to-date information.


Follow Us:

GitHub: https://github.com/iQuantC
Instagram:   / iquantconsult  

Happy MLOpsing! 🎉

🚀 Build an End-to-End MLOps Pipeline with Airflow, Streamlit, Docker, and Kubernetes! | Tutorial

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Automate ML Retraining with Drift Detection | MLOps Project #machinelearning #ai

Automate ML Retraining with Drift Detection | MLOps Project #machinelearning #ai

🚀 Prototype Machine Learning Model with Streamlit | Deploy with Docker & Kubernetes | Full Tutorial

🚀 Prototype Machine Learning Model with Streamlit | Deploy with Docker & Kubernetes | Full Tutorial

Прекратите неправильную установку Docker на Proxmox (вот правильный способ)

Прекратите неправильную установку Docker на Proxmox (вот правильный способ)

Вайб-кодинг в Cursor AI: полный гайд + реальный пример проекта (подходы, техники, трюки)

Вайб-кодинг в Cursor AI: полный гайд + реальный пример проекта (подходы, техники, трюки)

Kubeflow Pipeline Walkthrough | End-to-End ML Workflow

Kubeflow Pipeline Walkthrough | End-to-End ML Workflow

Build & Deploy ML Churn model with FastAPI, MLFlow, Docker, & AWS

Build & Deploy ML Churn model with FastAPI, MLFlow, Docker, & AWS

End to end ETL pipeline project using Docker, Airflow, PostgresDB and Metabase | Data Engineering

End to end ETL pipeline project using Docker, Airflow, PostgresDB and Metabase | Data Engineering

К чему готовиться? Останемся без денег? Что делать, когда заблокируют всё? || Дмитрий Потапенко*

К чему готовиться? Останемся без денег? Что делать, когда заблокируют всё? || Дмитрий Потапенко*

После Купянска Путину не верят даже свои. Руслан Левиев

После Купянска Путину не верят даже свои. Руслан Левиев

Kubernetes — Простым Языком на Понятном Примере

Kubernetes — Простым Языком на Понятном Примере

Курс: Docker за 180 минут | Обучение и практика с нуля

Курс: Docker за 180 минут | Обучение и практика с нуля

🔥 Fine-Tuning LLM | AI Sentiment Analyzer | For Beginners | #huggingface #llm #llmops

🔥 Fine-Tuning LLM | AI Sentiment Analyzer | For Beginners | #huggingface #llm #llmops

Airflow Tutorial: End-to-End Machine Learning Pipeline with Docker Operator

Airflow Tutorial: End-to-End Machine Learning Pipeline with Docker Operator

Professional Streamlit dashboards with Docker

Professional Streamlit dashboards with Docker

End to End MLOps Basics // Raviraja Ganta // MLOps Meetup #82

End to End MLOps Basics // Raviraja Ganta // MLOps Meetup #82

MLOps Tutorial #3: Track ML models with Git & GitHub Actions

MLOps Tutorial #3: Track ML models with Git & GitHub Actions

Why I Regret Ignoring Docker Swarm for 10 Years

Why I Regret Ignoring Docker Swarm for 10 Years

Запуск нейросетей локально. Генерируем - ВСЁ

Запуск нейросетей локально. Генерируем - ВСЁ

Docker за 20 минут

Docker за 20 минут

Part I MLOps Interview Questions

Part I MLOps Interview Questions

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]