Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Hands-on KubeFlow + Keras/TensorFlow 2.0 + TFX + K8s + PyTorch + XGBoost + Airflow + MLflow + Spark

Автор: AI Performance Engineering

Загружено: 2019-11-08

Просмотров: 12166

Описание:

Slideshare: https://www.slideshare.net/cfregly/tf...

RSVP Here: https://www.eventbrite.com/e/full-day...

Description

In this workshop, we build real-world machine learning pipelines using TensorFlow Extended (TFX), KubeFlow, Airflow, and MLflow.

Described in the 2017 paper, TFX is used internally by thousands of Google data scientists and engineers across every major product line within Google.





KubeFlow is a modern, end-to-end pipeline orchestration framework that embraces the latest AI best practices including hyper-parameter tuning, distributed model training, and model tracking.

XGBoost results on the pipelines UI

Airflow is the most-widely used pipeline orchestration framework in machine learning and data engineering.



MLflow is a lightweight experiment-tracking system recently open-sourced by Databricks, the creators of Apache Spark. MLflow supports Python, Java/Scala, and R - and offers native support for TensorFlow, Keras, and Scikit-Learn.





Pre-requisites

Modern browser - and that's it!

Every attendee will receive a cloud instance

Nothing will be installed on your local laptop

Everything can be downloaded at the end of the workshop



Location

Online Workshop

The link will be sent a few hours before the start of the workshop.

Only registered users will receive the link.

If you do not receive the link a few hours before the start of the workshop, please send your Eventbrite registration confirmation to support@pipeline.ai for help.



Agenda

1. Create a Kubernetes cluster

2. Install KubeFlow, Airflow, TFX, and Jupyter

3. Setup ML Training Pipelines with KubeFlow and Airflow

4. Transform Data with TFX Transform

5. Validate Training Data with TFX Data Validation

6. Train Models with Jupyter, Keras/TensorFlow 2.0, PyTorch, XGBoost, and KubeFlow

7. Run a Notebook Directly on Kubernetes Cluster with KubeFlow

8. Analyze Models using TFX Model Analysis and Jupyter

9. Perform Hyper-Parameter Tuning with KubeFlow

10. Select the Best Model using KubeFlow Experiment Tracking

11. Run Multiple Experiments with MLflow Experiment Tracking

12. Reproduce Model Training with TFX Metadata Store

13. Deploy the Model to Production with TensorFlow Serving and Istio

14. Save and Download your Workspace



Key Takeaways

Attendees will gain experience training, analyzing, and serving real-world Keras/TensorFlow 2.0 models in production using model frameworks and open-source tools.



RSVP Here: https://www.eventbrite.com/e/full-day...

Slideshare: https://www.slideshare.net/cfregly/tf...

Hands-on KubeFlow + Keras/TensorFlow 2.0 + TFX + K8s + PyTorch + XGBoost + Airflow + MLflow + Spark

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Hands-on with KubeFlow + Keras/TensorFlow 2.0 + TF Extended (TFX) + Kubernetes + PyTorch + XGBoost

Hands-on with KubeFlow + Keras/TensorFlow 2.0 + TF Extended (TFX) + Kubernetes + PyTorch + XGBoost

Автоматизируйте рабочие процессы ИИ/МО с помощью SageMaker Pipelines

Автоматизируйте рабочие процессы ИИ/МО с помощью SageMaker Pipelines

Kubeflow Pipelines - the intro!

Kubeflow Pipelines - the intro!

Workflow & MLOps for batch scoring applications with DVC, MLflow and Airflow, Mikhail Rozhkov

Workflow & MLOps for batch scoring applications with DVC, MLflow and Airflow, Mikhail Rozhkov

ML engineering for production ML deployments with TFX (TensorFlow Fall 2020 Updates)

ML engineering for production ML deployments with TFX (TensorFlow Fall 2020 Updates)

Building a Machine Learning Pipeline with Kubeflow | Full Walk-through

Building a Machine Learning Pipeline with Kubeflow | Full Walk-through

Machine Learning Experiment Tracking using MLFlow

Machine Learning Experiment Tracking using MLFlow

Intro to Kubeflow Pipelines

Intro to Kubeflow Pipelines

Machine Learning with Apache Airflow

Machine Learning with Apache Airflow

Machine Learning

Machine Learning

TFX: Production ML pipelines with TensorFlow (TF World '19)

TFX: Production ML pipelines with TensorFlow (TF World '19)

Data Science on AWS - Workshop - May 2021

Data Science on AWS - Workshop - May 2021

AI-Powered GPU Kernel Optimization(Mako.dev) + Distributed PyTorch with nbdistributed (Hugging Face)

AI-Powered GPU Kernel Optimization(Mako.dev) + Distributed PyTorch with nbdistributed (Hugging Face)

ML Ops design patterns with Kubeflow Pipelines - Amy Unruh, Google

ML Ops design patterns with Kubeflow Pipelines - Amy Unruh, Google

MLOps meetup #14 // Kubeflow vs MLflow with Byron Allen

MLOps meetup #14 // Kubeflow vs MLflow with Byron Allen

Machine Learning using Kubeflow and Kubernetes by Arun Gupta

Machine Learning using Kubeflow and Kubernetes by Arun Gupta

MLOps20: Building End-to-End Machine Learning Workflows with Kubeflow in AWS

MLOps20: Building End-to-End Machine Learning Workflows with Kubeflow in AWS

PySpark Tutorial

PySpark Tutorial

Build a Reproducible ML Workflow with Kubeflow Pipelines - Karl Weinmeister, Google

Build a Reproducible ML Workflow with Kubeflow Pipelines - Karl Weinmeister, Google

Feature Stores: Core Concepts, Practices and Workshop (with Feast and Kubeflow)

Feature Stores: Core Concepts, Practices and Workshop (with Feast and Kubeflow)

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: infodtube@gmail.com