Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

How do we OPTIMALLY assign drivers to riders? (Hungarian Algorithm) | Bipartite Matchings

Автор: OptWhiz

Загружено: 2022-11-10

Просмотров: 10973

Описание:

How do we optimally match drivers to passengers? Intuitively, we can estimate the waiting time required for a car to reach a passenger, and then find an assignment with the smallest waiting time. This is an example of a bipartite matching problem with edge weights. Here, we want everyone to be matched, while also finding an assignment with the lowest total waiting time.

Finding the optimal matching isn't trivial. The classic algorithm for solving this problem, the Hungarian algorithm, is an example of a primal-dual method, which aims to solve the primal problem (maximum weight matching) by iteratively improving on a dual problem (weighted coverings). To develop the intuition for the Hungarian algorithm, we talk about another problem in graph theory called vertex cover. Vertex covers are an interesting problem in their own right. However, what we need is a generalization of vertex cover to edge-weighted graphs. This generalization of vertex covers to weighted coverings gives us all of the tools necessary to formulate and talk about the Hungarian algorithm.

Also, sorry if the audio seems inconsistent. I was recording over multiple days and I think one day I was slightly sick so my voice was messed up!


Previous video on maximum cardinality matchings:
   • Can we assign everyone a job? (maximum mat...  

Some lecture notes I like:

http://timroughgarden.org/w16/l/l5.pdf
http://www.columbia.edu/~cs2035/cours...


Timestamps:
0:00 Motivation
0:37 Problem Formulation
2:18 Overview of Video
2:54 Vertex Covers & Konig's Theorem
6:14 Generalization of Vertex Cover
11:13 Hungarian Algorithm
16:50 History and Context

Music:

There's Probably No Time by Chris Zabriskie is licensed under a Creative Commons Attribution 4.0 license. https://creativecommons.org/licenses/...

Source: http://chriszabriskie.com/uvp/

Artist: http://chriszabriskie.com/


John Stockton Slow Drag by Chris Zabriskie is licensed under a Creative Commons Attribution 4.0 license. https://creativecommons.org/licenses/...

Source: http://chriszabriskie.com/uvp/

Artist: http://chriszabriskie.com/


The Temperature of the Air on the Bow of the Kaleetan by Chris Zabriskie is licensed under a Creative Commons Attribution 4.0 license. https://creativecommons.org/licenses/...

Source: http://chriszabriskie.com/uvp/

Artist: http://chriszabriskie.com/


The 49th Street Galleria by Chris Zabriskie is licensed under a Creative Commons Attribution 4.0 license. https://creativecommons.org/licenses/...

Source: http://chriszabriskie.com/uvp/

Artist: http://chriszabriskie.com/

How do we OPTIMALLY assign drivers to riders? (Hungarian Algorithm) | Bipartite Matchings

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Задача о назначениях. Венгерский алгоритм

Задача о назначениях. Венгерский алгоритм

Can we assign everyone a job? (maximum matchings) | Bipartite Matchings

Can we assign everyone a job? (maximum matchings) | Bipartite Matchings

Венгерский алгоритм

Венгерский алгоритм

How do you optimally bomb the Soviet rail network? | Max Flow (Ford-Fulkerson)

How do you optimally bomb the Soviet rail network? | Max Flow (Ford-Fulkerson)

The most fundamental optimization algorithm

The most fundamental optimization algorithm

Невзвешенное двудольное паросочетание | Сетевой поток | Теория графов

Невзвешенное двудольное паросочетание | Сетевой поток | Теория графов

Визуализация внимания, сердце трансформера | Глава 6, Глубокое обучение

Визуализация внимания, сердце трансформера | Глава 6, Глубокое обучение

Percolation: a Mathematical Phase Transition

Percolation: a Mathematical Phase Transition

Fibonacci Heaps or

Fibonacci Heaps or "How to invent an extremely clever data structure"

The trick that solves Rubik’s Cubes and breaks ciphers

The trick that solves Rubik’s Cubes and breaks ciphers

How do you optimally trade objects within a group?

How do you optimally trade objects within a group?

When to stop being greedy and just park | Optimal stopping and dynamic programming

When to stop being greedy and just park | Optimal stopping and dynamic programming

Венгерский алгоритм для взвешенных назначений

Венгерский алгоритм для взвешенных назначений

Amortized Analysis: Aggregate Analysis and Accounting Method

Amortized Analysis: Aggregate Analysis and Accounting Method

Matchings, Perfect Matchings, Maximum Matchings, and More! | Graph Theory

Matchings, Perfect Matchings, Maximum Matchings, and More! | Graph Theory

Преломление и «замедление» света | По мотивам лекции Ричарда Фейнмана

Преломление и «замедление» света | По мотивам лекции Ричарда Фейнмана

🧪🧪🧪🧪Как увидеть гиперпространство (4-е измерение)

🧪🧪🧪🧪Как увидеть гиперпространство (4-е измерение)

R7. Network Flow and Matching

R7. Network Flow and Matching

3.5 Prims and Kruskals Algorithms - Greedy Method

3.5 Prims and Kruskals Algorithms - Greedy Method

What in the world is a linear program?

What in the world is a linear program?

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]