Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Lecture 16 - Vector Embeddings Explained: How to Choose the Best Embedding Model | RAG Series

Автор: NeuroVed

Загружено: 2025-12-07

Просмотров: 64

Описание:

🎯 Master Vector Embeddings for RAG Applications
Learn everything about vector embeddings - the backbone of RAG applications! This comprehensive tutorial covers what embeddings are, how they work, and most importantly, how to choose the right embedding model for your project.
📚 What You'll Learn

Embedding Fundamentals: Converting text to numerical vectors
Semantic Meaning: How embeddings capture context and meaning
Scalar vs Vector: Understanding dimensions and magnitude
OpenAI Embedding Models: ada-002, text-embedding-3-small, text-embedding-3-large
MTEB Leaderboard: Industry standard for evaluating embedding models
Model Selection Strategy: 5-step framework for choosing embeddings
Open Source Options: Qwen 3, Nomic, Granite embeddings
Cost Optimization: Balancing performance and computational requirements

⚙️ Popular Embedding Models Covered
OpenAI Models:

text-embedding-ada-002 (1536 dimensions)
text-embedding-3-small (1536 dimensions) - Best cost/performance
text-embedding-3-large (3072 dimensions) - Highest accuracy

Open Source Models:

Qwen 3 Embedding (0.6B, 4B, 8B variants)
Nomic Embed
Granite Embedding
All-MiniLM

🎓 5-Step Framework for Choosing Embedding Models

Check MTEB Leaderboard - Select top 50 models
Evaluate Memory Requirements - Lower is better (0.6B ideal)
Consider Dimensions - Compact dimensions (768-1536 range)
Check Max Tokens - Should be ≥4096 or 8192
Balance Cost vs Performance - GPU requirements impact cloud costs

💡 Key Concepts Explained
✅ What are embeddings and why they matter
✅ Semantic meaning representation through numbers
✅ Vector mathematics - magnitude and direction
✅ Embedding dimensions (128 to 4000+)
✅ Contextual embeddings using transformers
✅ Multi-head attention mechanism
✅ GPU/CPU requirements for different model sizes
✅ Cloud deployment cost considerations
🔧 Technical Details
Dimension Guidelines:

Higher dimensions = More semantic meaning captured
Typical range: 300-3072 dimensions
Sweet spot: 768-1536 for most applications

Memory Requirements:

0.6B model: ~4GB GPU (recommended)
4B model: ~12GB GPU
8B model: ~20GB GPU
Thumb rule: GPU RAM = Model size × 2.5

Max Token Limits:

OpenAI: 8192 tokens
Gemini: 2048 tokens
Qwen 3: 32,768 tokens

📊 Cost Comparison
Text Embedding 3 Small:

62,500 pages per $1
Best price/performance ratio

Text Embedding 3 Large:

9,000 pages per $1
Higher accuracy, higher cost

Open Source (Qwen 3):

Free model weights
One-time GPU cost only

🎯 Real-World Applications

Google Search uses embeddings for retrieval
Perplexity AI leverages RAG with embeddings
Chatbots and Q&A systems
Semantic search engines
Document retrieval systems

📝 RAG Pipeline Steps (Recap)

Document Loading → Use document loaders
Chunking → Split text (recursive character splitter)
Embedding Generation → Convert chunks to vectors (THIS LECTURE)
Vector Storage → Store in vector databases (upcoming)
Retrieval → Find relevant chunks (upcoming)

🤖 Transformers & Contextual Embeddings

How transformers capture semantic meaning
Multi-head attention mechanism
Contextual vs static embeddings
Handling homonyms (bank = financial vs river bank)
Encoder-decoder architecture overview

💻 Code Implementation

LangChain integration examples
OpenAI embeddings setup
Azure OpenAI embeddings
Ollama for local embeddings
AWS Bedrock embeddings
Simple 2-3 line implementation

🔗 Resources Mentioned

MTEB Leaderboard (Massive Text Embedding Benchmark)
Ollama - Download open source models
LangChain Documentation - Embedding models
"Attention is All You Need" paper (Transformer architecture)

📌 Interview Preparation
Learn how to answer:

"Which embedding model did you use and why?"
"How do you choose an embedding model?"
"What factors influence embedding model selection?"
"Explain the difference between scalar and vector"
"How do embeddings capture semantic meaning?"




#️⃣ Hashtags
#VectorEmbeddings #RAG #LangChain #GenAI #MachineLearning #AI #OpenAI #MTEB #SemanticSearch #Transformers #NLP #DeepLearning #ChatBot #Python #DataScience #LLM #EmbeddingModels #Qwen #AITutorial

👍 Like, Share & Subscribe for more Gen AI tutorials!
💬 Questions? Drop them in the comments!
🔔 Enable notifications for the next lecture on Vector Databases!

Next Lecture: Vector Databases and Storage Solutions
Part of the comprehensive Gen AI Series covering RAG applications, embeddings, retrieval systems, and LLM integration.

📖 Key Takeaways
✨ Embeddings convert text into numerical vectors that capture semantic meaning
✨ Use MTEB leaderboard as your primary resource for model selection
✨ Balance performance, cost, and computational requirements
✨ Open source models like Qwen 3 offer excellent value
✨ Transformers enable contextual understanding in embeddings
✨ GPU requirements directly impact cloud deployment costs
✨ Implementation is simple - just 2-3 lines of code!

Lecture 16 - Vector Embeddings Explained: How to Choose the Best Embedding Model | RAG Series

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Китай только что запустил SLAUGHTERBOTS: армию роботов, полностью управляемую искусственным интел...

Китай только что запустил SLAUGHTERBOTS: армию роботов, полностью управляемую искусственным интел...

Lecture 17 - Complete RAG Pipeline: From Document to Vector Store | End-to-End Implementation

Lecture 17 - Complete RAG Pipeline: From Document to Vector Store | End-to-End Implementation

Lecture 15 -Text Chunking Explained: Character vs Recursive Splitting | RAG Series Tutorial

Lecture 15 -Text Chunking Explained: Character vs Recursive Splitting | RAG Series Tutorial

Lecture 7 - Prompt Engineering Basics with LangChain | Clear Prompts, Context & Best Practices

Lecture 7 - Prompt Engineering Basics with LangChain | Clear Prompts, Context & Best Practices

Lecture 14: Document Loaders & Text Chunking in LangChain | PDF Processing & Splitting Strategies

Lecture 14: Document Loaders & Text Chunking in LangChain | PDF Processing & Splitting Strategies

Lecture 5: LLM Models Setup - Ollama, Google AI Studio & LangChain Integration | Gen AI in Hindi

Lecture 5: LLM Models Setup - Ollama, Google AI Studio & LangChain Integration | Gen AI in Hindi

Чамат утверждает, что OpenAI превращается в MySpace.

Чамат утверждает, что OpenAI превращается в MySpace.

The Next Big Thing in Tech is Almost Here

The Next Big Thing in Tech is Almost Here

Как стать невидимым в сети в 2026 году

Как стать невидимым в сети в 2026 году

РОССИЯ: Город у границы с Эстонией, время будто остановилось! Путешествия по России - вопросы!

РОССИЯ: Город у границы с Эстонией, время будто остановилось! Путешествия по России - вопросы!

Grzegorz Braun z kwiatami pod szczecińską stocznią.

Grzegorz Braun z kwiatami pod szczecińską stocznią.

COMPLETE EMBEDDED SYSTEMS Roadmap - What Arduino Won't Teach You

COMPLETE EMBEDDED SYSTEMS Roadmap - What Arduino Won't Teach You

Amazon’s 144-Chip Trainium 3 Monster Server Just Destroyed Google & Nvidia’s Future!

Amazon’s 144-Chip Trainium 3 Monster Server Just Destroyed Google & Nvidia’s Future!

GPT 5.2 Release, Corporate Collapse in 2026, and $1.1M Job Loss | EP #215

GPT 5.2 Release, Corporate Collapse in 2026, and $1.1M Job Loss | EP #215

Генеральный директор Google DeepMind только что изменил мое представление об искусственном интелл...

Генеральный директор Google DeepMind только что изменил мое представление об искусственном интелл...

Satya Nadella demos an app he built | Microsoft AI Tour Bengaluru

Satya Nadella demos an app he built | Microsoft AI Tour Bengaluru

Lock Down Your Browser With These Must Have Privacy Tools

Lock Down Your Browser With These Must Have Privacy Tools

The AI Bubble Explained Like You're 5

The AI Bubble Explained Like You're 5

What Ilya Saw: The Truth That Could Change Everything About AI’s Future

What Ilya Saw: The Truth That Could Change Everything About AI’s Future

We Are Toast: The AI Expert Who Wrote The Textbook Warns Humanity | Stuart Russell x Steven Bartlett

We Are Toast: The AI Expert Who Wrote The Textbook Warns Humanity | Stuart Russell x Steven Bartlett

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]