Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

How Big are All Infinities Combined? (Cantor's Paradox) | Infinite Series

pbsds

pbs

pbs ds

infinite

infinite series

cantor

cantor's

cantor's paradox

paradox

math

mathematics

infinite size

infinites

infinity

sets

set theory

education

maths

Автор: PBS Infinite Series

Загружено: 24 мар. 2018 г.

Просмотров: 142 666 просмотров

Описание:

Viewers like you help make PBS (Thank you 😃) . Support your local PBS Member Station here: https://to.pbs.org/donateinfi

Infinities come in different sizes. There’s a whole tower of progressively larger "sizes of infinity". So what’s the right way to describe the size of the whole tower?

Tweet at us! @pbsinfinite
Facebook: facebook.com/pbsinfinite series
Email us! pbsinfiniteseries [at] gmail [dot] com

Previous Episode:
The Geometry of SET
   • The Geometry of SET | Infinite Series  

Check out the solution to the Geometry of SET challenge problem right here: https://bit.ly/2Ggpw1d

Talking about the sizes of infinite things is tricky in part because the word “infinite” is often used in two distinct ways -- to refer to the sets themselves, and also to refer to the sizes of those sets. In what follows, let’s try to keep as sharp a distinction as we can between infinite sets and infinite set *sizes*, because doing so will let me highlight an especially paradoxical feature about infinite sizing that I don't think gets enough coverage. The technical term for a “size”, infinite or otherwise, is “cardinality”, and I should probably use a term like “numerousness” or “numerosity” rather than “size” because the idea it tries to generalize is the notion of "how many". Still, I’m going to say “size” a lot in this episode just because it’s easier.

Written and Hosted by Tai-Denae Bradley
Produced by Rusty Ward
Graphics by Ray Lux
Assistant Editing and Sound Design by Mike Petrow and Linda Huang
Made by Kornhaber Brown (www.kornhaberbrown.com)

Thanks to Peleg Shilo, Anurag Bishnoi, and Yael Dillies for your comments on last week's episode:
   • The Geometry of SET | Infinite Series  
   • The Geometry of SET | Infinite Series  
   • The Geometry of SET | Infinite Series  

Special thanks to Roman Pinchuk for supporting us on our Converse level on Patreon.

Along with thanks to Matthew O'Connor, Yana Chernobilsky, and John Hoffman who are supporting us on Patreon at the Identity level!

And thanks to Mauricio Pacheco and Andrew Poelstra who are supporting us at the Lemma level!

How Big are All Infinities Combined? (Cantor's Paradox) | Infinite Series

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Kill the Mathematical Hydra | Infinite Series

Kill the Mathematical Hydra | Infinite Series

The Banach–Tarski Paradox

The Banach–Tarski Paradox

How the Axiom of Choice Gives Sizeless Sets | Infinite Series

How the Axiom of Choice Gives Sizeless Sets | Infinite Series

This pattern breaks, but for a good reason | Moser's circle problem

This pattern breaks, but for a good reason | Moser's circle problem

Но что такое нейронная сеть? | Глава 1. Глубокое обучение

Но что такое нейронная сеть? | Глава 1. Глубокое обучение

The Man Who Almost Broke Math (And Himself...)

The Man Who Almost Broke Math (And Himself...)

The Geometry of SET | Infinite Series

The Geometry of SET | Infinite Series

The Riemann Hypothesis, Explained

The Riemann Hypothesis, Explained

Мнимая ошибка, над которой ломали голову 2 000 лет [Veritasium]

Мнимая ошибка, над которой ломали голову 2 000 лет [Veritasium]

Что измеряют IQ тесты? [Veritasium]

Что измеряют IQ тесты? [Veritasium]

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]