Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

L#15 | 2022 | RING THEORY AND LINEAR ALGEBRA-I | PROPERTIES OF RING HOMOMORPHISM | B.Sc. Mathematics

Автор: COSMOS LEARNING

Загружено: 2022-02-13

Просмотров: 958

Описание:

PROPERTIES OF RING HOMOMORPHISM

Theorem 15.1 Properties of Ring Homomorphisms
Let f be a ring homomorphism from a ring R to a ring S. Let A be a
subring of R and let B be an ideal of S.
1. For any r [ R and any positive integer n, f(nr) 5 nf(r) and
f(rn) 5 (f(r))n.
2. f(A) 5 {f(a) | a [ A} is a subring of S.
3. If A is an ideal and f is onto S, then f(A) is an ideal.
4. f21(B) 5 {r [ R | f(r) [ B} is an ideal of R.
5. If R is commutative, then f(R) is commutative.
6. If R has a unity 1, S 2 {0}, and f is onto, then f(1) is the unity
of S.
7. f is an isomorphism if and only if f is onto and Ker f 5
{r [ R | f(r) 5 0} 5 {0}.
8. If f is an isomorphism from R onto S, then f21 is an
isomorphism from S onto R.
PROOF The proofs of these properties are similar to those given in
Theorems 10.1 and 10.2 and are left as exercises (Exercise 1).
The student should learn the various properties of Theorem 15.1
in words in addition to the symbols. Property 2 says that the homomor-
phic image of a subring is a subring. Property 4 says that the pullback
of an ideal is an ideal, and so on.
The next three theorems parallel results we had for groups. The
proofs are nearly identical to their group theory counterparts and are
left as exercises (Exercises 2, 3, and 4).

Theorem 15.2 Kernels Are Ideals
Let f be a ring homomorphism from a ring R to a ring S. Then Ker f
5 {r [ R | f(r) 5 0} is an ideal of R.
Theorem 15.3 First Isomorphism Theorem for Rings
Let f be a ring homomorphism from R to S. Then the mapping from
R/Ker f to f(R), given by r 1 Ker f S f(r), is an isomorphism. In
symbols, R/Ker f f(R).

Theorem 15.4 Ideals Are Kernels
Every ideal of a ring R is the kernel of a ring homomorphism of R.
In particular, an ideal A is the kernel of the mapping r S r 1 A
from R to R/A.
The homomorphism from R to R/A given in Theorem 15.4 is called
the natural homomorphism from R to R/A. Theorem 15.3 is often re-
ferred to as the Fundamental Theorem of Ring Homomorphisms.
In Example 17 in Chapter 14 we gave a direct proof that kxl is a
prime ideal of Z[x] but not a maximal ideal. In the following example
we illustrate a better way to do this kind of problem.
EXAMPLE 10 Since the mapping f from Z[x] onto Z given by
f( f(x)) 5 f(0) is a ring homomorphism with Ker f 5 kxl (see Exercise 29
in Chapter 14), we have, by Theorem 15.3, Z[x]/kxl Z. And because
Z is an integral domain but not a field, we know by Theorems 14.3 and
14.4 that the ideal kxl is prime but not maximal in Z[x].
Theorem 15.5 Homomorphism from Z to a Ring with Unity
Let R be a ring with unity 1. The mapping f: Z S R given by n S n ? 1
is a ring homomorphism.

L#15 | 2022 | RING THEORY AND LINEAR ALGEBRA-I | PROPERTIES OF RING HOMOMORPHISM | B.Sc. Mathematics

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

L#16 | 2022 | RING THEORY AND LINEAR ALGEBRA-I | PROPERTIES OF RING HOMOMORPHISM #2 | Mathematics

L#16 | 2022 | RING THEORY AND LINEAR ALGEBRA-I | PROPERTIES OF RING HOMOMORPHISM #2 | Mathematics

Теорема Байеса, геометрия изменения убеждений

Теорема Байеса, геометрия изменения убеждений

Ideals Of Ring | Ring Theory | Simple Ring | Examples | Abstract Algebra

Ideals Of Ring | Ring Theory | Simple Ring | Examples | Abstract Algebra

Теренс Тао о том, как Григорий Перельман решил гипотезу Пуанкаре | Лекс Фридман

Теренс Тао о том, как Григорий Перельман решил гипотезу Пуанкаре | Лекс Фридман

Задача Британской олимпиады по математике 1995 года

Задача Британской олимпиады по математике 1995 года

L 39 Determining Ring Homomorphism | Z12 to Z30 | Ring Theory | B Sc Hons Maths | DU

L 39 Determining Ring Homomorphism | Z12 to Z30 | Ring Theory | B Sc Hons Maths | DU

Почему любители часто круче «профессионалов»?

Почему любители часто круче «профессионалов»?

Задача из вступительных Стэнфорда

Задача из вступительных Стэнфорда

Почему Питер Шольце — математик, каких бывает раз в поколение?

Почему Питер Шольце — математик, каких бывает раз в поколение?

Что такое квантовая теория

Что такое квантовая теория

Самый короткий тест на интеллект Задача Массачусетского профессора

Самый короткий тест на интеллект Задача Массачусетского профессора

ПОСТУПАЕМ НА МАТФАК! Вопрос на собеседовании!

ПОСТУПАЕМ НА МАТФАК! Вопрос на собеседовании!

Задача про надёжный пароль | В интернете опять кто-то неправ #035 | Борис Трушин и Математик Андрей

Задача про надёжный пароль | В интернете опять кто-то неправ #035 | Борис Трушин и Математик Андрей

Для Чего РЕАЛЬНО Нужен был ГОРБ Boeing 747?

Для Чего РЕАЛЬНО Нужен был ГОРБ Boeing 747?

🧪🧪🧪🧪Как увидеть гиперпространство (4-е измерение)

🧪🧪🧪🧪Как увидеть гиперпространство (4-е измерение)

Комплексные числа. Как мнимое стало реальным // Vital Math

Комплексные числа. Как мнимое стало реальным // Vital Math

ЗАНИМАТЕЛЬНАЯ ВЕРОЯТНОСТЬ. ЛЕКЦИЯ 21.11.2025 В РАМКАХ ЛЕКТОРИЯ ВДНХ

ЗАНИМАТЕЛЬНАЯ ВЕРОЯТНОСТЬ. ЛЕКЦИЯ 21.11.2025 В РАМКАХ ЛЕКТОРИЯ ВДНХ

⚠️ Prohibido Para Sensibles: Así Sería una Guerra Nuclear Minuto a Minuto

⚠️ Prohibido Para Sensibles: Así Sería una Guerra Nuclear Minuto a Minuto

Самая Сложная Задача В Истории Самой Сложной Олимпиады

Самая Сложная Задача В Истории Самой Сложной Олимпиады

ИНТУИЦИЯ vs. ЛОГИКА : Что важнее в математике? | LAPLAS

ИНТУИЦИЯ vs. ЛОГИКА : Что важнее в математике? | LAPLAS

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: infodtube@gmail.com